Fluorescence Imaging
Fluorescence techniques in minimally invasive surgery visualize features that are invisible under conventional white light. Autofluorescence (AF) uses the endogenous fluorescence of the mucosa to differentiate malignant tumors from healthy tissue at an early stage. Photodynamic diagnosis (PDD) detects the pathological accumulation of fluorescent porphyrin products in bladder tumors and allows rigorous treatment of these malignant changes. Use of near-infrared (NIR) imaging expands the spectrum of diagnostic options and enables the perfusion evaluation of organs and tissues and the visualization of the bile duct or visually supports the diagnosis of lymph nodes. Indocyanine green (ICG) is used in this case. These different procedures rely on the D-LIGHT light sources as well as on specially adapted telescopes and our HD camera systems.
In combination with the IMAGE1 S™ camera system, these fluorescence methods offer physicians additional optical support for diagnostic decision-making.
Additional information on the specialty
IMAGE1 S™ Rubina – mORe to discover
VITOM® 3D – 3D Visualization for Microsurgery and Open Surgery
ICG-Webclip "Visualization of liver metastasis using NIR/ICG"
ICG-Webclip "Cholecystectomy – Differentiation od the Bile Ducts"
IMAGE1 S™ Rubina – mORe to discover

20133720-1 D-LIGHT P

20 1336 20-1 Cold Light Fountain D-LIGHT C, 20 1336 20-133 Cold Light Fountain D-LIGHT C / AF

IMAGE1 S™ HX FI Camera Heads TH 112 HX FI, TH 113 HX-P FI

IMAGE1 S™ – TC 200, TC 201, TC 300, TC 301, TC 302, TC 304

Packaging symbols
Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery
A Comparison of Radiocolloid and Indocyanine GreenFluorescence Imaging, Sentinel Lymph Node Mapping in Patients with Cervical Cancer
Human Medicine
Fluorescence Imaging
Annals of Surgical Oncology. 2015 Jun 30.
Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures
Endoscopic ICG perfusion imaging for flap transplants: clinical results
Human Medicine
Fluorescence Imaging
Head Neck Oncol. 2010; 2(Suppl 1): O15. Published online 2010 October 29. doi: 10.1186/1758-3284-2-S1-O15
Semi-quantitative Fluorescence Endoscopy with use of ICG
Human Medicine
Fluorescence Imaging
World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany IFMBE Proceedings, 2009, Volume 25/6, 118-119, DOI: 10.1007/978-3-642-03906-5_32
Endoscopic measurements of free-flap perfusion in the head and neck region using red-excited Indocyanine Green: preliminary results
Human Medicine
Fluorescence Imaging
J Plast Reconstr Aesthet Surg. 2009 Dec;62(12):1602-8. Epub 2008 Nov 25
Lymph node pathway visualization in real time by laparoscopic radioisotope- and fluorescence- guided sentinel lymph node dissection in prostate cancer staging
Human Medicine
Fluorescence Imaging
27th Annual Congress of the European Association of Urology Paris, February 27, 2012
IntraoperativeLaparoscopicFluorescenceGuidance to the Sentinel Lymph Node in Prostate Cancer Patients: Clinical Proof of Concept of an Integrated Functional Imaging Approach Using a Multimodal Tracer
Human Medicine
Fluorescence Imaging
European Urology Volume 60, Issue 4, October 2011, Pages 826–833
Die laparoskopische Fluoreszenzangiographie mit Indocyaningrün zur intraoperativen Beurteilung der Perfusion bei kolorektalen Anastomosen
Human Medicine
Fluorescence Imaging
Deutsche Gesellschaft für Chirurgie, 2009, Volume 38, Chirurgisches Forum und DGAV Forum 2009 , XXIII, 331-333, DOI: 10.1007/978-3-642-00625-8_120