Precancerous and cancerous lesions of the larynx manifest significant neoangiogenesis as epithelial and subepithelial microvascular changes. There is no doubt that histological verification is absolutely indicated for cases with a high possibility of malignancy. On the other hand, other lesions (e.g. leukoplakias, etc.) can remain stable for months or even years, and a conservative treatment or watch-and-wait policy benefits those with a low malignancy risk. Sometimes it is very difficult to establish what patients and lesions should be histologically examined or not under general anesthesia because changes in the neoangiogenesis architecture typical for malignant lesions are not evident in the white light. That is why advanced endoscopic methods called “biologic endoscopy” (e.g. NBI, autofluorescence, contact endoscopy with vital tissue staining, confocal endomicroscopy etc.) are used to detect those changes. NBI (Narrow Band Imaging, Olympus Corp., Tokyo, Japan) has a wide application in otorhinolaryngology for preoperative and perioperative workup and is effective for the follow-up of patients with ENT cancer after surgical treatment and/or chemoradiotherapy.

IMAGE1 S™ technology (KARL STORZ, Tuttlingen, Germany) is a new digital technique used to improve endoscopic visual–digital reprocessing, based on the spectral separation of the record within a high-definition camera system. IMAGE1 S™ enhances the appearance of the mucosal surface, and the epithelial vascular architecture is characterized by five defined spectral ranges (CLARA, CHROMA, CLARA + CHROMA, SPECTRA A and SPECTRA B). Although NBI endoscopy has been commonly used in the last decade and was widely recommended, the initial experience with IMAGE1 S™ is more limited, because very few articles have been published to compare both methods.

Reasons for the Comparison of the two Methods.
The reason why we wanted to compare both investigative methods was practical. We have a good six years of experience using NBI technology and flexible endoscopy for evaluation of laryngeal lesions in our outpatient department. Nevertheless this technology is not available in the operating theatres of our clinic, where operations are performed under general anesthesia. We can use the IMAGE1 S™ system only for evaluation of lesions during surgery. The question was whether or not both technologies are comparable and if it is possible to evaluate laryngeal lesions with the IMAGE1 S™ system and if we can rely on it.

Methods
Patients with different laryngeal lesions were investigated using a high-definition flexible endoscope with NBI 3.9 mm under local anesthesia in an outpatient department. After NBI endoscopy all patients underwent direct laryngoscopy, and the microvascular patterns were evaluated using the CLARA + CHROMA and SPECTRA B modalities of the IMAGE1 S™ enhancement system with a 4 mm 30° rigid endoscope under general anesthesia. Then a targeted biopsy from the lesion was taken. Evaluation for neoangiogenesis was performed under NBI as well as IMAGE1 S™ endoscopy, vascular patterns in the center and around the laryngeal lesions were analyzed and classified according to the descriptive guidelines of vascular changes by Arens et al. The NBI examination and IMAGE1 S™ endoscopy were performed by three experienced otolaryngologists and compared with 4 groups of histological results (I - benign lesions, II - recurrent respiratory papillomatosis, III - low grade dysplasia, IV - severe dysplasia + carcinoma in situ + invasive squamous cell carcinoma).

Results
73 patients were included in the study. The results confirmed strong agreement between histological assessment and NBI (81.43%) as well as IMAGE1 S™ (81.16%). The level of agreement between the endoscopic methods was 92.54% – the two endoscopic imaging methods did not differ significantly from each other. According to us the best impact for us had CLARA + CHROMA and SPECTRA B visualization technologies.
Conclusion
Both the NBI videendoscopy and IMAGE1 S™ endoscopy methods are comparable in detection and analysis of superficial neoangiogenesis that is typical for benign lesions and also for precancerous or cancerous changes.

Legends
Figure 1

Squamouscellular carcinoma of the left vocal cord, IMAGE1 S™ details and borders of tumor are more visible:
a = CLARA + CHROMA, b = SPECTRA B

Figure 2

Benign granuloma. IMAGE1 S™ details: a = CLARA + CHROMA, b = SPECTRA B

Figure 3

Leukoplakia of the left vocal cord, histologically mild dysplasia, IMAGE1 S™:
a = CLARA + CHROMA, b = SPECTRA B
References

06 20-0.1

All rights reserved.
© 2020 Endo:Press® GmbH
P.O. Box, 78503 Tuttlingen, Germany
Phone: +49 (0) 74 61 / 1 45 90
Fax: +49 (0) 74 61 / 708-529
E-mail: Endopress@t-online.de

No part of this publication may be translated, reprinted or reproduced, transmitted in any form or by any means, electronic or mechanical, now known or hereafter invented, including photocopying and recording, or utilized in any information storage or retrieval system without the prior written permission of the copyright holder.

Important note:

Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this publication, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this publication is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this publication are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this publication as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this publication.

Any legal claims or claims for damages are excluded.

In case any references are made herein to any 3rd party publication(s) or links to any 3rd party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this publication endorse in any way the content of said publication(s) and / or web sites referred to or linked from this publication and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the 3rd party publication(s) or 3rd party websites.
Experts' Opinion:

“Although differentiation with ECE between hyperplasia and low-grade dysplasia is still difficult, ECE offers an Se and Sp rate of 100% in the distinction between normal tissue, inflammation, and hyperplasia versus SCC, and appears as a useful method to better visualize and more precisely interpret the vascular changes in precancerous and cancerous lesions of the larynx and hypopharynx.”

Combine Enhanced 4K and High Magnification Contact Endoscopy

- Enhanced endoscopic imaging including SPECTRA* supporting the visual detection of tissue and vasculature
- Side by side real time display for comparison
- High magnification contact endoscopy for better straight and around the corner optical evaluation of tissue
- Multiple enhanced visualization modalities with rigid endoscope, flexible HD videoendoscope or coupled operating microscope

not for sale in the U.S.

KARL STORZ SE & Co. KG, Dr.-Karl-Storz-Straße 34, 78532 Tuttingen/Germany, www.karlstorz.com