ENDOSCOPIC EAR SURGERY
Surgical Manual of Standard Procedures

Daniele MARCHIONI, Livio PRESUTTI and Davide SOLOPERITO
ENDOSCOPIC EAR SURGERY
Surgical Manual of Standard Procedures

Daniele MARCHIONI¹, Livio PRESUTTI²
and Davide SOLOPERTO³

¹ | MD, Professor and Head of Department of Otorhinolaryngology,
 AOUI Verona, University of Verona, Italy

² | MD, Professor and Head of ENT Department, University Hospital of
 Modena Policlinico, Modena, Italy

³ | MD, Department of Otorhinolaryngology, AOUI Verona, Italy
Important notes:

Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader's own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any third party publication(s) or links to any third party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the third party publication(s) or third party websites and no guarantee is given for any other work or any other websites at all.

ISBN 978-3-89756-227-1
Table of Contents

1. **Introduction** .. 7

2. **Middle Ear Anatomical Concepts** .. 9
 2.1. Retrotympanum ... 9
 2.2. Epitympanum .. 10
 2.2.1. Epitympanic Diaphragm and Prussak Space 11
 2.3. Hypotympanum ... 11
 2.4. Protympanum .. 12

3. **Endoscopic Middle Ear Surgical Procedures and Case Histories** 12
 3.1. Endoscopic Myringoplasty ... 12
 3.1.1. Rationale ... 12
 3.1.2. Endoscopic Myringoplasty with Tragal Cartilage and Perichondrium 13
 Case 1 .. 13
 3.2. Endoscopic Stapedotomy ... 14
 3.2.1. Rationale ... 14
 3.2.2. Endoscopic Stapedotomy 15
 Case 2 .. 15
 3.3. Endoscopic Cholesteatoma Surgery 17
 3.3.1. Rationale ... 17
 3.3.2. General Indications .. 17
 3.3.3. Attic Cholesteatoma .. 18
 Case 3 .. 18
 Case 4 .. 20
 3.3.4. Second-Look Surgery with Ossiculoplasty after Cholesteatoma Removal 22
 Case 5 .. 22

4. **References** ... 24
Contributing Authors

Daniele Marchioni,
MD, Professor and Head of Department of Otorhinolaryngology, AOUI Verona, University of Verona, Italy

Livio Presutti,
MD, Professor and Head of ENT Department, University Hospital of Modena Policlinico, Modena, Italy

Davide Soloperto,
MD, Department of Otorhinolaryngology, AOUI Verona, Italy
Introduction

The increasingly widespread acceptance of endoscopic techniques emerging in the past decades had – and still has – a considerable impact on otology, and in particular, on endoscopic surgery of the middle ear. During the 1990s, endoscopy was adopted in otology only as a diagnostic modality and was never used for surgical procedures performed via the transtympanic route. Significant advancements have been made recently in the field of endoscopic-assisted middle ear surgery and have provided the surgeon with an unprecedented, extremely detailed view of the “in vivo” anatomy of the middle ear. It is generally known that the middle ear is a very small space, which – especially in some of its subunits – is virtually not amenable to microscopic inspection. The complexity of middle ear anatomy has prompted experienced otosurgeons to devise a host of techniques for exploring areas that are difficult to visualize with the operating microscope. Despite the illumination and magnification offered by the operating microscope, its use has proved to be associated with distinct limitations. Only those structures that are located directly in the line of sight are visually accessible and it is impossible to “look around corners”. The straight line of sight, a surgeon typically has to cope with when performing middle ear surgery through a microscope, is associated with blind spots. These limitations can be compensated for by the complementary use of scopes, that provide a direction of view other than 0 degree (e.g., 30°-scopes). Apart from a more comprehensive examination of the anatomy, endoscopy allows to explore and better understand the physiology and ventilation pathways of the middle ear which can become blocked as a result of specific pathological alterations.

While instruments and auxiliary devices used in endoscopic ear surgery are similar to those of traditional otosurgical procedures, curved instruments have been adapted to the current otoscopic approaches – as determined by principles of good surgical practice – resulting in longer and thinner instruments, with single or double curvature, with various angles and more delicate extremities (Figs. 1.1, 1.2).

Fig. 1.1 Left ear. Cadaveric dissection. An ear hook, curved to the left, is used to mobilize the chorda tympani in a stenotic external auditory canal.

Fig. 1.2 Right ear. Cadaveric dissection. Double-ended curette used for a complete exposure of the attic.

Fig. 1.3 Right ear. Panoramic view of the tympanic cavity before (a) and after (b) use of CLARA visualization mode. These specific modes of the digital image enhancement system is used effectively to brighten dark aspects of the image thus allowing for improved detail recognition.
In recent years, major advancements in the field of videoendoscopic imaging technology have been introduced in otorhinolaryngology allowing surgeons to derive particular advantages in terms of real-time enhanced visualization. An outstanding example of such an up-to-date high-definition (HD) camera system is the IMAGE1 S (KARL STORZ Tuttlingen, Germany). The modular design of the system allow the operator to choose between various visualization modes (CLARA, CHROMA and SPECTRA A*/B**), which have been designed to modify the video signal's chrominance components and to improve the perception of details. The main feature of CLARA mode is that it provides a more distinct appearance of darker areas by harmonizing density values in all parts of the endoscopic image. SPECTRA A*/B** mode and CHROMA mode have in common that they facilitate evaluation of the mucosal surface and the subepithelial vascularization, and this is very useful to distinguish healthy tissue from pathology, especially during cholesteatoma surgery (Figs. 1.3–1.6).

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.

Fig. 1.4 SPECTRA B** visualization mode. The visual appearance of vascularity is enhanced and differentiation between the cholesteatoma matrix and adjacent structures is improved.

Fig. 1.5 Tympanic membrane demonstrated by standard visualization (a). Views of the same site using CLARA (b) and CHROMA (c) image enhancement modes.

Fig. 1.6 Tympanic cavity demonstrated by standard visualization (a) and by use of CHROMA (b) image enhancement mode. Note the highly vascularized area over the promontory region.
Middle Ear Anatomical Concepts

The middle ear can be conceptually divided into subspaces on the basis of their relationships with the mesotympanum: the mesotympanum is the portion that an observer can visualize through the external ear canal by the use of an otoscope or a microscope. Posteriorly to it lies the retrotympanum, superiorly the epitympanum, anteriorly the protympanum, and inferiorly the hypotympanum (Fig. 2.1).

2.1. Retrotympanum

The retrotympanum is a complex structure consisting of various spaces located in the posterior aspect of the tympanic cavity. The retrotympanum is a space divided by a bony crest (termed subiculum) into superior and inferior components. The pyramidal eminence is the fulcrum of the retrotympanum (Fig. 2.2). From this structure two bony structures arise: the chordal ridge and the ponticulus. The chordal ridge extends outward and transversally toward the chordal eminence, and separates the facial recess superiorly and the lateral tympanic sinus inferiorly. The ponticulus extends inward and transversally to the promontory region dividing the sinus tympani inferiorly and the posterior tympanic sinus superiorly. The sinus tympani lies medial to the pyramidal eminence, the stapedius muscle, and the facial nerve and is located lateral to the posterior semicircular canal and vestibule.

Fig. 2.1 Right ear. Schematic drawing of the tympanic cavity. Chorda (ct); malleus (ma); incus (in); stapes (s); promontory (pr). By courtesy of Georg Thieme Verlag KG, Stuttgart, Germany.

Fig. 2.2 Right ear. 45° endoscopic view. The retrotympanum. Note the pyramidal eminence, the tympanic tract of the facial nerve, the stapedial region and the round window niche. The cochleariform process is also visible.
The superior limit of this space is represented by the ponticulus. The inferior anatomical boundary is a prominent ridge (termed subiculum) that extends from the styloid eminence to the posterior rim of the cochlear window niche

(Figs. 2.3, 2.4). Recent anatomical studies have been focused on the sinus tympani and examined the feasibility of gaining endoscopic access to this cavity,11,14 The morphology of the sinus tympani was classified on the basis of intraoperative findings and the anatomical variations of the ponticulus were also described.

2.2. Epitympanum

The epitympanic space is a pneumatized portion of the temporal bone superior to the mesotympanum. Various authors have studied the anatomy of the epitympanic compartments. From an anatomical point of view, it is possible to classify the epitympanum into two distinct compartments: a larger and posterior one (posterior epitympanic space, PES) and a smaller and anterior compartment (anterior epitympanic space, AES). Depending on the conformation of the cog and tensor tympani fold, the boundary between the AES and the PES can be the cog itself or can be drawn by a coronal plane located at the level of the cochleariform process. The body and short process of the incus along with the malleus head occupy most of the posterior epitympanic space (Fig. 2.5).

Fig. 2.3 Right ear. 45° endoscopic view. Cholesteatoma involving the superior retrotympanum. Note the extension to the superior retrotympanum, between the ponticulus superiorly and the subiculum inferiorly. The tegmen and the posterior pillar of round window niche are covered by cholesteatoma matrix.

Fig. 2.4 Right ear. 45° endoscopic view after retrotympanic cholesteatoma removal. The incus is removed and the tympanic tract of the facial nerve is clearly identified.

Fig. 2.5 Left ear. Endoscopic cadaveric dissection of the right epitympanic spaces. Head of the malleus and body of the incus are clearly visualized. Note the course of the chorda tympani and its relationship with the ossicular chain.
2.2.1. Epitympanic Diaphragm and Prussak Space

The epitympanic diaphragm consists of three malleal ligamental folds (anterior, lateral, and posterior), the posterior incudal ligamental fold, and two purely membranous folds (the tensor tympani fold and the lateral incudomalleal fold) together with the malleus and incus (Fig. 2.6).

Palva and colleagues described the anatomy of the epitympanic diaphragm when studying ventilation pathways of the epitympanum. They observed that the aeration pathway from the eustachian tube leads directly to the mesotympanic and hypotympanic spaces, whereas the epitympanum is set apart from the direct air stream and is only aerated through the tympanic isthmus. The 0°- and 45°-scopes provide a magnified view of the space between the incudostapedial joint and cochleariform process including the tensor tendon (Fig. 2.7).

2.3. Hypotympanum

The hypotympanum is part of the tympanic cavity that lies beneath the level of the eardrum at the junction of the tympanic and petrous parts of the temporal bone. It is usually shaped like an irregular bony groove, extending from the finiculus posteriorly toward the eustachian tube orifice anteriorly (Fig. 2.8). The inferior aspect of the hypotympanum corresponds to the juncture of its outer and inner walls and it separates the tympanic cavity from the jugular bulb. The inferior aspect of the hypotympanum varies considerably due to the presence of bony recesses on its floor and its close proximity to the inferior retrotympanum (Fig. 2.9).
2.4. Protympanum

The protympanic space is a pneumatic portion of the middle ear that lies anteriorly to the mesotympanum, inferiorly to the AES, and superiorly to the hypotympanum (Figs. 2.10–2.12). The cochleariform process and the tensor fold with the tensor tympani canal represent the upper limit of the protympanic space, while it is commonly bounded posteriorly by the promontory. In middle ear surgery, the protympanic space is less important than other spaces because chronic disease seldom involves this recess, however, it is yet noteworthy that some important structures are located there. The protympanum can be divided into two portions: the supratubal recess superiorly, and the eustachian tube orifice inferiorly.

3.1. Endoscopic Myringoplasty

3.1.1. Rationale

Although in general microscopic myringoplasty is considered a safe operation, the endoscopic technique is probably even safer due to the absence of an external incision, which minimizes the risk of postoperative wound infection or hematoma formation. The procedure obviates the need for bone drilling to create an adequately wide access, which otherwise is fraught with the risk of postoperative external auditory canal (EAC) stenosis or anomalous healing processes. The direct visualization of the entire medial aspect of the middle ear (including the facial nerve) adds support to that concept.
3.1.2. Endoscopic Myringoplasty with Tragal Cartilage and Perichondrium

Case 1

Left subtotal eardrum perforation (Figs. 3.1, 3.2). Using a 0° endoscope, the EAC is infiltrated with a mixture of mepivacaine 2% with epinephrine. The edges of the tympanic perforation are debrided circumferentially under endoscopic control. The EAC is incised from the 6 o’clock to the 12 o’clock position. The tympanomeatal flap is detached from the bone while using cottonoids soaked in epinephrine (50% with saline solution) to avoid excessive bleeding. Flap dissection proceeds medially, pushing the skin medially and anteriorly, encompassing the incision until the fibrous annulus is identified. The fibrous annulus is raised with a microhook which offers a good view of the middle ear. Dissection of the flap proceeds from posterior to anterior, making sure that the flap remains adherent to the anterior edge of the malleus handle. The flap is dissected from the malleus handle using a sickle-shaped scalpel.

Once the appropriate plane has been developed, the tympanomeatal flap can be dissected proceeding in a posteroanterior and superoinferior direction, completely releasing the malleus handle from tympanic residues and exposing the anterior annulus (Fig. 3.3).

The middle ear is explored to remove any epidermis fragments that may be present, so as to avoid iatrogenic cholesteatoma as well as ventilation patterns (in particular, isthmus and the tensor tympani fold are also evaluated (Fig. 3.4).
A circumferential island of cartilage is formed as determined by the eardrum defect. The perichondrial layer on the posterior surface of the cartilage is modeled while maintaining adherence to the cartilage. A microhook, angled to the left, working length 5.5 cm, is used to insert the graft through the external auditory canal. The cartilage graft is finally positioned by passing it above the malleus handle and making contact with the medial face of the residual eardrum (Figs. 3.5, 3.6).

The denuded portion of cartilage will be positioned laterally to the tympanic residues, fitting through the perforation, and the perichondrium will be medial to the tympanic residues and positioned under and anteriorly to the malleus handle. The tympanomeatal flap is then repositioned over the graft.

3.2. Endoscopic Stapedotomy

3.2.1. Rationale

Since the introduction of the classic stapedectomy technique by Shea, many different procedures have been described in the literature from a microscopic point of view. The operating microscope provides magnified images of highest quality, however with line of vision being limited to objects located straight ahead, and the field of view reaching only the narrowest segment of the ear canal. The main advantages of the endoscopic approach are that there is virtually no trauma to the chorda tympani in cases where there is no curetting or drilling, and that one has excellent visualization of the anterior crus of the stapes, its superstructure, and the oval window niche. In the course of the operation, the surgeon may choose a close-up view and then swiftly change to panoramic vision simply by advancing or withdrawing the scope. Another option is on-axis rotation of the scope in order to obtain a circumferential view. In cases of facial prolapse or dehiscence, use of the scope can be very helpful in evaluating the stapes footplate (platina) and performing stapedotomy in the right position, eliminating the risk of iatrogenic injury to the facial nerve. Besides, the endoscopic technique is used effectively in cases of stapes malformation or in revision surgery where meticulous anatomical scrutiny is needed to better understand the real relationship between the surrounding anatomical structures with the microscope.
3.2.2. Endoscopic Stapedotomy

Case 2

Left ear (Fig. 3.7). Using a 0°-endoscope, a tympanomeatal flap is raised at the wall of the EAC from the 5 o’clock to the 12 o’clock position (Figs. 3.8, 3.9). The posterior bony part of the EAC may occasionally be curetted or drilled to better expose the incudostapedial joint. The middle ear is inspected with a 0°-scope to check the most important anatomical landmarks (Figs. 3.10–3.12).

Fig. 3.7 Left ear. Normal appearance of the tympanic membrane.

Fig. 3.8 The skin of the external auditory canal is incised from the 5 o’clock to the 12 o’clock position.

Fig. 3.9 Left ear. The tympanomeatal flap is harvested and raised until the fibrous annulus is revealed, using a curved otologic dissector, working length 5.5 cm. Cottonoids saturated with adrenalin solution facilitate hemostasis during this surgical step.

Fig. 3.10 The stapedial region is exposed. The flap is elevated with a delicate cupped ear forceps, 1 x 4.5 mm, working length 8 cm. Occasionally, the posterior bony part of the EAC can be curetted or drilled to facilitate exposure of the incudostapedial joint. When curetting (or drilling) is needed, special care is given to the chorda tympani to prevent causing iatrogenic damage to this structure.

Fig. 3.11 Left ear. High-definition endoscopic view of incudostapedial joint. Stapedial tendon, posterior crus and stapes footplate are clearly exposed. A micro hook curved to the right is used to confirm the presence of stapes fixation.

Fig. 3.12 Left ear. High-definition endoscopic view of incudostapedial joint visualized with a 45°-scope. Note the anterior and posterior crura, stapes footplate and facial nerve which can be appreciated in great detail.
Attention is directed at the facial nerve to ensure that it is not prolapsed onto the footplate. Following a brief test on the status of the ossicular chain, the incudostapedial joint is disarticulated sharply in an anteroposterior plane. The stapedial tendon is divided with small curved scissors (Fig. 3.13). The stapes superstructure is downfractured with delicate force and removed, leaving the footplate intact (Fig. 3.14). A platinotomy is created at the midportion or the posterior portion of the footplate with a standard small drill (Fig. 3.15). A standard teflon or titanium prosthesis (0.5 mm in diameter and usually 4.75 mm long) is calibrated by measuring the distance from the footplate to the medial surface of the incus. The prosthesis is placed between the oval window and the incus. The malleus is carefully palpated to ensure unimpeded movement of the ossicles all the way through the prosthesis (Fig. 3.16).

An endoscopic close-up view of the oval window and the prosthesis offers better control of the final result of surgery. The tympanomeatal flap is repositioned and sealed with Gelfoam on the external auditory canal (Fig. 3.17).
3.3. Endoscopic Cholesteatoma Surgery

3.3.1. Rationale
The transmeatal endoscopic approach has shown to be a feasible and safe minimally invasive technique for the exposure and excision of cholesteatoma confined to the middle ear cavity and its extensions.\(^{17,34,35}\) Improved eradication of the cholesteatoma by endoscopic removal of hidden pathology from the facial recess, sinus tympani, anterior epitympanic space, and eustachian tube is one of the well-accepted benefits of endoscopic ear surgery (EES)\(^2,3,23\) (Fig. 3.18).

Considering that decision-making on the surgical technique to be adopted is largely dependent of the extent of disease, preoperative otoscopic and radiological findings can play a crucial role in defining an individualized surgical treatment strategy, which should be based on the findings according to the cholesteatoma classification, differentiating between the following groups:

1. Primary acquired cholesteatoma.
2. Secondary acquired cholesteatoma.

The pathogenesis of cholesteatoma remains incompletely understood. From recent studies with endoscopic techniques new theories about the genesis of the primary acquired cholesteatoma in the attic region can be postulated.\(^{12,27,30,31}\)

3.3.2. General Indications
The transcanal endoscopic approach enables good control of the whole tympanic cavity and of the blind areas (retrotympanum, hypotympanum, and protympanum). Use of this technique is indicated as first-line treatment option in patients with congenital cholesteatoma limited to the tympanic cavity, mesotympanic primary acquired cholesteatoma with focal retraction of the pars tensa, and secondary acquired cholesteatoma limited to the middle ear (Fig. 3.19).
3.3.3. Attic Cholesteatoma

The main goals of the transcanal endoscopic surgical approach to attic cholesteatoma removal are:

- Direct approach to pathology with complete removal of cholesteatoma.
- Restoration of the ventilation of the upper unit by clearing the tympanic isthmus of pathological tissue and mucosal folds that could create a blockage of this important anatomical region, and thus creating a second ventilation pathway by removal of the tensor fold. This procedure is aimed at establishing a direct communication between the anterior attic region and the protympanum.
- Preservation of the mastoid mucosa and of the transmucosal gas exchange.

Case 3

Attic Cholesteatoma of the Right Ear

During endoscopic evaluation, an epitympanic perforation with scutum erosion and attic cholesteatoma is revealed (Fig. 3.20). The tympanomeatal flap is harvested and revealed (Fig. 3.21). The flap is elevated using an angled round knife. Due caution should be exercised during inferior transposition of the pars flaccida and pars tensa. During this step, the cholesteatoma matrix must be separated from the eardrum, which is relocated inferiorly on the long process of the malleus and separated from the umbo (Fig. 3.22). An atticotomy is performed in order to facilitate exposure of the epitympanic spaces (Fig. 3.23).
The Prussak space and the ossicular chain are now evaluated and particular attention is paid to look for signs of erosion of the chain (Fig. 3.24). If this is not confirmed, then the standard surgical maneuvers are carried out carefully in order not to damage this vulnerable structure. After complete removal of cholesteatoma, the middle ear cavity is thoroughly inspected with a 45°-scope to make sure that no residual disease is left behind. Isthmus and tensor fold are evaluated to restore normal ventilation in case of blockage (Fig. 3.25). Once a tragal incision has been made, a piece of cartilage with perichondrium is used to reconstruct the scutum. The tympanomeatal flap is finally repositioned (Figs. 3.26, 3.27).

Fig. 3.24 View of the ossicular chain upon complete exposure.

Fig. 3.25 Final aspect of the tympanic cavity after cholesteatoma removal. Careful inspection of the ossicular chain is particularly aimed at detecting signs of erosion. All spaces of the tympanic cavity are thoroughly inspected to check for residual disease.

Fig. 3.26 The lateral bony wall of the attic is reconstructed using a tragal cartilage graft.

Fig. 3.27 The tympanomeatal flap is repositioned and a few Gelfoam pledgets are placed in the EAC.
Case 4

Congenital Cholesteatoma of the Left Ear

The tympanic membrane is examined with a 0°-otoscope. A huge cholesteatoma of the middle ear is revealed (Potsic stage III, Fig. 3.28). Following infiltration with a topical solution of anesthetic and adrenalin, the tympanomeatal flap is harvested. The cholesteatoma is found to occupy the entire tympanic cavity (Fig. 3.29). With gentle dissection, the cholesteatoma sac is detached from the mesotympanic and protympanic spaces (Fig. 3.30).

Fig. 3.28 Endoscopic view of the left tympanic membrane. Cholesteatoma is revealed in the mesotympanum.

Fig. 3.29 The tympanomeatal flap is completely harvested. The tympanic cavity is extensively occupied by the cholesteatoma. Only the long process of malleus is visualized.

Fig. 3.30 The cholesteatoma sac is gently dissected.

Fig. 3.31 The cholesteatoma matrix is gradually dissected. The stapes is found to be eroded, the platina is clearly visualized.
The head of malleus is sectioned and removed in order to expose the medial aspect of the epitympanum (Figs. 3.31–3.33). The cholesteatoma is completely removed using a 45°-scope and angled instruments (Fig. 3.34). At the end of surgery, an ossiculoplasty is performed with the remodelled head of malleus (Figs. 3.35–3.37).

Fig. 3.32 The malleus head is transected to expose the medial aspect of the epitympanum. Owing to cholesteatoma invasion, the chorda tympani also needs to be transected. The promontory is gradually exposed, thereby removing the cholesteatoma matrix.

Fig. 3.33 The use of angled instruments is critical in removing the holesteatoma matrix. Note the platina and the course of the facial nerve.

Fig. 3.34 At the end of surgery, there are no signs of residual disease. All sectors are explored with a 45°-scope.

Fig. 3.35 Protympanic space and Eustachian tube orifice are free of disease.

Fig. 3.36 Ossiculoplasty with the remodelled malleus head is performed to reconstruct the sound-conducting system. Pieces of Gelfoam are placed around the malleus to provide stable support.

Fig. 3.37 Endoscopic view at the end of the surgery. A piece of Gelfoam is applied to reinforce the attic and the tympanomeatal flap is laid back to return to its anatomical position.
3.3.4. Second-Look Surgery with Ossiculoplasty after Cholesteatoma Removal

Case 5

Left ear. After tympanomeatal flap elevation, the tympanic cavity is exposed through a transcanal endoscopic approach (Fig. 3.38). The incus is absent, because it has been eroded by the cholesteatoma and removed during previous surgery. Middle ear mucosa is normal, with no evidence of residual cholesteatoma, in particular, the retrotympanum is free from disease. The stapes is present and in good condition. After small retroauricular incision, a fragment of cortical mastoid bone is harvested and modeled for ossiculoplasty (Fig. 3.39). A temporalis fascia is also taken. The bone fragment is remodeled and placed on the stapes (Fig. 3.40).

![Fig. 3.38](image1.png) Left ear. After tympanomeatal flap elevation, the retrotympanum is clearly seen through a transcanal endoscopic approach. Note the ponticulus, a bony ridge extending from the pyramidal process to the promontory region separating the sinus tympani from the posterior tympanic sinus. The facial nerve and the stapes are clearly demonstrated.

![Fig. 3.39](image2.png) A mastoid cortical bone fragment is used to reconstruct the ossicular chain.

![Fig. 3.40](image3.png) Once the mastoid bone cortical fragment has been, carved to appropriate size and shape, it is placed under the stapes making sure that good contact is maintained.
Reconstruction is completed placing the temporalis fascia over the ossiculoplasty and under the drum (Figs. 3.41–3.43).

Fig. 3.41 The ossicular reconstruction is stabilized with pieces of Gelfoam positioned all around.

Fig. 3.42 A temporalis fascia graft is placed over the ossiculoplasty and beneath the drum.

Fig. 3.43 The tympanomeatal flap is laid back down over the graft and the ossiculoplasty.

Instrument Set for Endoscopic Ear Surgery
Instrument Set for Endoscopic Ear Surgery

1. 227201 **Ear Hook**, curved right, length 16 cm
2. 227202 **Same**, curved left
3. 227203 **Same**, curved backwards
4. 227206 **Ear Dissector**, curved right, length 16 cm
5. 227207 **Same**, curved left
6. 227208 **Same**, curved backwards
7. 227211 **Curette**, spoon-shaped, diameter 1.0 mm, length 16 cm
8. 227213 **Curette**, double-ended, spoon-shaped tips: diameter 1.0 mm and 1.5 mm, 90° curved, length 17 cm
9. 226213 **THOMASSIN Dissector**, double-ended, distal tips angled 90° to right or left, length 18 cm
10. 226212 **Dissector**, double-ended, tips double curved right and left, length 18 cm
11. 226211 **Same**, distal tips with single curve to right or to left
12. 224003 **HOUSE Curette**, medium, spoon sizes 1 x 1.8 mm and 2 x 3.5 mm, length 15 cm
13. 224004 **HOUSE Double Curette**, medium, spoon sizes 1 x 1.8 mm and 2 x 2.8 mm, length 18 cm
14. 227230 **Round Knife**, diameter 3 mm, easy to handle due rotating tube olive, length 19 cm
15. 204359C **Suction Cannula**, curved 3 mm, Luer-Lock, outer diameter 1 mm, length 8 cm, conical
16. 204361C **Suction Cannula**, curved 6 mm, Luer-Lock, outer diameter 1 mm, length 8 cm, conical
17. 204362C **Suction Cannula**, curved 6 mm, Luer-Lock, outer diameter 1.2 mm, length 8 cm, conical
18. 204365C **Suction Cannula**, curved 8 mm, Luer-Lock, outer diameter 1.2 mm, length 8 cm, conical
19. 204366C **Suction Cannula**, curved 8 mm, Luer-Lock, outer diameter 1.6 mm, length 8 cm, conical
20. 204367C **Suction Cannula**, curved 6 mm, Luer-Lock, outer diameter 1.6 mm, length 8 cm, conical
21. 204357 **Suction Cannula**, curved 3 mm, Luer-Lock, outer diameter 0.6 mm, length 10 cm
22. 204358 **Same**, outer diameter 0.8 mm
23. 204359 **Same**, outer diameter 1.0 mm
24. 204360 **Suction Cannula**, curved 6 mm, Luer-Lock, outer diameter 0.8 mm, length 10 cm
25. 204361 **Same**, outer diameter 1.0 mm
26. 204362 **Same**, outer diameter 1.2 mm
27. 204365 **Suction Cannula**, curved 8 mm, Luer-Lock, outer diameter 1.2 mm, length 10 cm
28. 204366 **Same**, outer diameter 1.6 mm, length 10 cm
29. 204200 **FISCH Suction Handle**, with cut-off hole, Luer cone, length 5.5 cm
30. 600019 **LUER Cone Connector**, male, rotating
31. 227255 **Ear Forceps**, curved downwards, retrograde, extra delicate, oval cupped jaws, 0.9 mm, working length 10 cm
32. 227253 **Same**, 45° curved upwards, extra delicate, oval cupped jaws, 0.6 mm
33. 227251 **Same**, 45° curved right
34. 227252 **Same**, 45° curved left

It is recommended to check the suitability of the product for the intended procedure prior to use.
Endoscopic-Guided Middle Ear Diagnosis
Recommended Set according to Dr. M. TARABICHI
HOPKINS® Telescopes and Accessories

1215AA BA

1215AA
Tele-Otoscope with HOPKINS® Straight Forward Telescope 0°,
diameter 4 mm, length 6 cm,
autoclavable, fiber optic light transmission incorporated,
color code: green

1215BA
Tele-Otoscope with HOPKINS® Forward-Oblique Telescope 30°,
diameter 4 mm, length 6 cm,
autoclavable, fiber optic light transmission incorporated,
color code: red

1230AA
HOPKINS® Straight Forward Telescope 0°,
diameter 2.7 mm, length 11 cm,
autoclavable, fiber optic light transmission incorporated,
color code: red

1230BA
HOPKINS® Forward-Oblique Telescope 30°,
diameter 2.7 mm, length 11 cm,
autoclavable, fiber optic light transmission incorporated,
color code: red

723773 STAMMBERGER Telescope Handle, round, length 6.5 cm,
for use with HOPKINS® telescopes with diameter 2.7 / 3 mm
and length 11 cm

203710 Suction Tube, cylindrical, LUER,
outer diameter 1 mm, working length 9 cm
LED Battery Light Sources for Endoscopes

11301D4 **LED Battery Light Source for Endoscopes**, with fast screw thread, brightness > 110 lm / > 150 klx, burning time > 120 min, weight approx. 150 g ready for use, **suitable for wipe disinfection**

11301DE **Battery Light Source LED for Endoscopes**, rechargeable, with click connection, boost mode for temporary increase in brightness, color temperature 5500 K, lithium-ion batteries, charging time 60 min, burning time at 100% brightness 40 min, weight approx. 150 g, **suitable for wipe disinfection**

11301DF **Battery Light Source LED for Endoscopes**, rechargeable, with fast screw thread, boost mode for temporary increase in brightness, color temperature 5500 K, lithium-ion batteries, charging time 60 min, burning time at 100% brightness 40 min, weight approx. 150 g, **suitable for wipe disinfection**

11301DG **Charging Unit**, for 11301DE/11301DF, for two LED battery light sources, with fix integrated power supply and adaptor for EU, UK, USA and Australia, power supply 110 – 240 VAC, 50/60 Hz, **suitable for surface disinfection**

094129 **Battery Charger Li-Ion**, for charging the rechargeable Battery Box 091424 or Battery Light Source 11301 DE/DF, for use with Mains Cord 094127, power supply 100 – 240 VAC, 50/60 Hz

094127 **Mains Cord**, for Battery Charger 094129, length 150 cm
Endoscopic-Guided Middle Ear Surgery
Recommended Set according to Dr. M. TARABICHI

HOPKINS® Telescopes and Accessories

HOPKINS® Straight Forward Telescope 0°
- **7230AA**
 - Enlarged view, diameter 4 mm, length 18 cm, autoclavable,
 - Fiber optic light transmission incorporated,
 - Color code: green

HOPKINS® Forward-Oblique Telescope 30°
- **7230BA**
 - Enlarged view, diameter 4 mm, length 18 cm, autoclavable,
 - Fiber optic light transmission incorporated,
 - Color code: red

HOPKINS® Straight Forward Telescope 0°
- **7220AA**
 - Enlarged view, diameter 3 mm, length 14 cm, autoclavable,
 - Fiber optic light transmission incorporated,
 - Color code: green

HOPKINS® Forward-Oblique Telescope 30°
- **7220BA**
 - Enlarged view, diameter 3 mm, length 14 cm, autoclavable,
 - Fiber optic light transmission incorporated,
 - Color code: red

WAGENER Ear Hook
- **152201**
 - Ball end, size 1, length 15.5 cm
- **152202**
 - Same, size 2
- **152203**
 - Same, size 3
- **152301**
 - Ear Hook, without ball end, size 1, length 15.5 cm
- **152302**
 - Same, size 2

FISCH Adaptor
- **204250**
 - For Suction Tubes 204352 – 204354, with long thumb grip, cut-off hole diameter 1 mm, inner diameter 1.7 mm, Luer cone, length 5.5 cm

Suction Cannula
- **204005**
 - Angular, Luer-Lock, outer diameter 0.5 mm, working length 6 cm
- **204007**
 - Same, outer diameter 0.7 mm
- **204008**
 - Same, outer diameter 0.8 mm
- **204010**
 - Same, outer diameter 1 mm
- **204013**
 - Same, outer diameter 1.3 mm
- **204015**
 - Same, outer diameter 1.5 mm
- **204020**
 - Same, outer diameter 2 mm
- **204025**
 - Same, outer diameter 2.5 mm
221100 HARTMANN Ear Forceps, extra delicate, serrated, 1 x 4.5 mm, working length 8 cm
221150 Same, working length 12.5 cm
221201 FISCH Ear Forceps, extra delicate, serrated, 0.4 x 3.5 mm, working length 8 cm
221304 Ear Forceps, extra delicate, serrated, curved to right, working length 8 cm
221305 Same, curved to left
221307 Same, curved upwards
221310 THOMASSIN Ear Forceps, very fine, serrated, retrograde backwards curved, working length 8 cm

162500 STRÜMPEL Ear Forceps, working length 8 cm
222800 HOUSE-DIETER Malleus Nipper, upbiting, working length 8 cm
222900 Same, downbiting

221450 – 221454
221454 FISCH Ear Forceps, round cupped jaws, working length 12.5 cm, diameter 3 mm

221406 – 221709
221509 WULLSTEIN Ear Forceps, extra delicate, oval cupped jaws, curved to right, oval, 0.9 mm, working length 8 cm
221609 Same, curved to left
221709 Same, curved upwards
Surgical Instruments

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>222602</td>
<td>HOUSE-BELLUCCI Scissors, extra delicate,</td>
</tr>
<tr>
<td></td>
<td>working length 8 cm</td>
</tr>
<tr>
<td>222604R</td>
<td>BELLUCCI Scissors, delicate, curved to right,</td>
</tr>
<tr>
<td></td>
<td>working length 8 cm</td>
</tr>
<tr>
<td>222605L</td>
<td>Same, curved to left</td>
</tr>
<tr>
<td>152301</td>
<td>Ear Hook, without ball end, size 1, length 15.5 cm</td>
</tr>
<tr>
<td>223100</td>
<td>PLESTER Knife, round, vertical, standard size: 3.5 x 2.5 mm, length 16 cm</td>
</tr>
<tr>
<td>223101</td>
<td>Same, medium size: 4 x 2 mm</td>
</tr>
<tr>
<td>223500</td>
<td>ROSEN Elevator, tip angled 15°, 12 mm long,</td>
</tr>
<tr>
<td></td>
<td>width 1.5 mm, length 16 cm</td>
</tr>
<tr>
<td>223890</td>
<td>Seeker, extra delicate, angled 25°,</td>
</tr>
<tr>
<td></td>
<td>with ball end diameter 0.6 mm, length 16 cm</td>
</tr>
</tbody>
</table>
224001 HOUSE Curette, large, spoon sizes 2 x 3.2 mm and 1.6 x 2.6 mm, length 15 cm
224002 Same, small, spoon sizes 1 x 1.6 mm and 1.3 x 2 mm
224003 Same, medium, spoon sizes 1 x 1.8 mm and 2 x 2.8 mm
224005 HOUSE Curette, angular, extra small, spoon sizes 0.6 x 0.8 mm and 0.8 x 1 mm, length 17 cm
224011 HOUSE Curette, straight, extra large, spoon sizes 2.3 x 3.5 mm and 2.7 x 4.3 mm, length 15 cm
224301 WULLSTEIN Needle, strong long curve, length 16.5 cm
224302 Same, medium curve
224303 Same, slight curve
226211 THOMASSIN Dissector, double-ended, distal tips with single curve to right or to left, length 18 cm
226212 Same, distal tips with double curve to right or to left
226815 Round Knife 45°, diameter 1.5 mm, length 16 cm
226825 Same, diameter 2.5 mm
226835 Same, diameter 3.5 mm
UNIDRIVE® S III ENT SCB/UNIDRIVE® S III ECO
The multifunctional unit for ENT

Special Features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>UNIDRIVE® S III ENT SCB</th>
<th>UNIDRIVE® S III ECO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen: Straightforward function selection via touch screen</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Set values of the last session are stored</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Optimized user control due to touch screen</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Choice of user languages</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>One unit – multifunctional:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Shaver system for surgery of the paranasal sinuses and anterior skull base</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>– INTRA Drill Handpieces (40,000 rpm and 80,000 rpm)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>– Sinus Shaver</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>– Micro Saw</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>– Dermatome</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>– High-Speed Handpieces (60,000 rpm and 100,000 rpm)</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Two motor outputs: Two motor outputs enable simultaneous connection of two motors:</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>For example, a shaver and micro motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft start function</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Textual error messages</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Integrated irrigation and coolant pump</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Easy program selection via automated motor recognition</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Continuously adjustable revolution range</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Maximum number of revolutions and motor torque: Microprocessor-controlled motor rotation speed. Therefore the preselected parameters are maintained throughout the drilling procedure</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Maximum number of revolutions can be preset</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>SCB model with connections to the KARL STORZ Communication Bus (KARL STORZ-SCB)</td>
<td>●</td>
<td>-</td>
</tr>
<tr>
<td>Irrigator rod included</td>
<td>●</td>
<td>-</td>
</tr>
</tbody>
</table>
System specifications

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
<th>Order No.</th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaver mode</td>
<td>oscillating in conjunction with Handpiece: DRILLCUT-X® II Shaver Handpiece</td>
<td>40 7120 50</td>
<td>10,000</td>
</tr>
<tr>
<td>Sinus burr mode</td>
<td>rotating in conjunction with Handpiece: DRILLCUT-X® II Shaver Handpiece</td>
<td>40 7120 50</td>
<td>12,000</td>
</tr>
<tr>
<td>High-speed drilling mode</td>
<td>counterclockwise or clockwise in conjunction with: High-Speed Micro Motor</td>
<td>20 7120 33</td>
<td>60,000/100,000</td>
</tr>
<tr>
<td>Drilling mode</td>
<td>counterclockwise or clockwise in conjunction with: micro motor and connecting cable</td>
<td>20 7110 33</td>
<td>40,000/80,000</td>
</tr>
<tr>
<td>Micro saw mode</td>
<td>in conjunction with: micro motor and connecting cable</td>
<td>20 7110 33</td>
<td>15,000/20,000</td>
</tr>
<tr>
<td>Dermatome mode</td>
<td>in conjunction with: micro motor and connecting cable</td>
<td>20 7110 33</td>
<td>8,000</td>
</tr>
</tbody>
</table>

Power supply:

100–240 VAC, 50/60 Hz

Dimensions:

300 x 165 x 265 mm

Two outputs for parallel connection of two motors

Integrated irrigation pump:
Flow: adjustable in 9 steps

Touch Screen

UNIDRIVE® S III ENT SCB

6.4" / 300 cd/m²

UNIDRIVE® S III ECO

Weight

5.2 kg

4.7 kg

Certified to

UNIDRIVE® S III ENT SCB

IEC 60601-1 CE acc. to MDD

UNIDRIVE® S III ECO

IEC 60601-1 CE acc. to MDD

Available languages

UNIDRIVE® S III ENT SCB

English, French, German, Spanish, Italian, Portuguese, Greek, Turkish, Polish, Russian

UNIDRIVE® S III ECO

Numerical codes
Motor Systems

Special features of high-performance EC micro motor II
and of the high-speed micro motor

Special features of high-performance EC micro motor II:
- Brushless high-performance EC micro motor
- Autoclavable
- Reprocessable in a cleaning machine
- Detachable connecting cable
- INTRA coupling enables a wide variety of applications

- Number of revolutions can be continuously adjusted up to 40,000 rpm
- Provided a suitable handle is used, the number of revolutions can be continuously adjusted up to 80,000 rpm

![High-Performance EC Micro Motor II](image1)

20711033

High-Performance EC Micro Motor II, for use with UNIDRIVE® II/UNIDRIVE® ENT/OMFS/NEURO/ECO and Connecting Cable 20711073, or for use with UNIDRIVE® S III ENT/ECO/NEURO and Connecting Cable 20711173

![Connecting Cable](image2)

20711173

Connecting Cable, to connect High-Performance EC Micro Motor 20711033 to UNIDRIVE® S III ENT/ECO/NEURO

Special Features of the high-speed micro motor:
- Brushless high-speed micro motor
- Autoclavable
- Reprocessable in a cleaning machine

- Number of revolutions can be continuously adjusted up to 60,000 rpm
- Provided a suitable handle is used, the number of revolutions can be continuously adjusted up to 100,000 rpm

![High-Speed Micro-Motor](image3)

20712033

High-Speed Micro-Motor, max. speed 60,000 rpm, including connecting cable, for use with UNIDRIVE® S III ENT/NEURO
UNIDRIVE® S III ENT SCB

UNIDRIVE® S III ECO

Recommended System Configuration

UNIDRIVE® S III ENT SCB

40701620-1

UNIDRIVE® S III ENT SCB, motor control unit with color display, touch screen, two motor outputs, integrated irrigation pump and SCB module, power supply 100–240 VAC, 50/60 Hz

including:

- **Mains Cord**
- **Irrigator Rod**
- **Two-Pedal Footswitch**, two-stage, with proportional function
- **Clip Set**, for use with silicone tubing set
- **SCB Connecting Cable**, length 100 cm
- **Single Use Tubing Set***, sterile, package of 3

UNIDRIVE® S III ECO

40701420

UNIDRIVE® S III ECO, motor control unit with two motor outputs and integrated irrigation pump, power supply 100–240 VAC, 50/60 Hz

including:

- **Mains Cord**
- **Two-Pedal Footswitch**, two-stage, with proportional function
- **Clip Set**, for use with silicone tubing set
- **Single Use Tubing Set***, sterile, package of 3

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>UNIDRIVE® S III ENT SCB</th>
<th>Dimensions w x h x d</th>
<th>Weight</th>
<th>Certified to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen</td>
<td>6.4”/300 cd/m²</td>
<td>300 x 165 x 265 mm</td>
<td>5.2 kg</td>
<td>EC 601-1, CE acc. to MDD</td>
</tr>
<tr>
<td>Flow</td>
<td>9 steps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC, 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UNIDRIVE® S III ENT SCB
UNIDRIVE® S III ECO
System Components

UNIT SIDE
PATIENT SIDE

Two-Pedal Footswitch
2001630

Single Use Tubing Set
031131-10

UNIDRIVE®

High-speed EC Micro Motor II
20711033
20711173

High-Speed Micro Motor
20712033

High-Speed Handpieces
252660 - 252692

INTRA Drill Handpieces
252575 - 252590

High-peformance EC Micro Motor II

Micro Saw
254000 - 254300

Dermatome
253100 - 253300

Single Use Tubing Set
031131-10
Optional Accessories
for UNIDRIVE® S III ENT SCB and UNIDRIVE® S III ECO

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>280053</td>
<td>Universal Spray, 6x 500 ml bottles – HAZARDOUS GOODS – UN 1950 including: Spray Nozzle</td>
</tr>
<tr>
<td>280053C</td>
<td>Spray Nozzle, for the reprocessing of INTRA burr handpieces, for use with Universal Spray 280053B</td>
</tr>
<tr>
<td>031131-10*</td>
<td>Tubing Set, for irrigation, for single use, sterile, package of 10</td>
</tr>
</tbody>
</table>
INTRA Drill Handpieces
for Ear Micro Surgery

Special Features:
- Tool-free closing and opening of the drill
- Right/left rotation
- Max. rotating speed up to 40,000 rpm/80,000 U/min
- Detachable irrigation channels
- Reprocessable in a cleaning machine

252570 INTRA Drill Handpiece, angled, length 12.5 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and straight shaft burrs

252573 INTRA Drill Handpiece, angled, length 12.5 cm, transmission 1:2 (80,000 rpm), for use with KARL STORZ high-performance EC micro motor II and straight shaft burrs

252590 INTRA Drill Handpiece, straight, length 11 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and straight shaft burrs
Burrs

Straight Shaft Burrs, length 7 cm, for use with INTRA Drill Handpieces 252590, 252570, 252573

<table>
<thead>
<tr>
<th>Detail</th>
<th>Size</th>
<th>Diam. mm</th>
<th>Standard</th>
<th>Tungsten Carbide</th>
<th>Transverse Carbide</th>
<th>Diamond</th>
<th>Diamond, coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>006</td>
<td>0.6</td>
<td>260006</td>
<td>261006</td>
<td>–</td>
<td>262006</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>007</td>
<td>0.7</td>
<td>260007</td>
<td>261007</td>
<td>–</td>
<td>262007</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>008</td>
<td>0.8</td>
<td>260008</td>
<td>261008</td>
<td>–</td>
<td>262008</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>010</td>
<td>1</td>
<td>260010</td>
<td>261010</td>
<td>–</td>
<td>262010</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>014</td>
<td>1.4</td>
<td>260014</td>
<td>261014</td>
<td>261114</td>
<td>262014</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>018</td>
<td>1.8</td>
<td>260018</td>
<td>261018</td>
<td>–</td>
<td>262018</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>023</td>
<td>2.3</td>
<td>260023</td>
<td>261023</td>
<td>261123</td>
<td>262023</td>
<td>262223</td>
<td>–</td>
</tr>
<tr>
<td>027</td>
<td>2.7</td>
<td>260027</td>
<td>261027</td>
<td>–</td>
<td>262027</td>
<td>262227</td>
<td>–</td>
</tr>
<tr>
<td>031</td>
<td>3.1</td>
<td>260031</td>
<td>261031</td>
<td>261131</td>
<td>262031</td>
<td>262231</td>
<td>–</td>
</tr>
<tr>
<td>035</td>
<td>3.5</td>
<td>260035</td>
<td>261035</td>
<td>–</td>
<td>262035</td>
<td>262235</td>
<td>–</td>
</tr>
<tr>
<td>040</td>
<td>4</td>
<td>260040</td>
<td>261040</td>
<td>261140</td>
<td>262040</td>
<td>262240</td>
<td>–</td>
</tr>
<tr>
<td>045</td>
<td>4.5</td>
<td>260045</td>
<td>261045</td>
<td>–</td>
<td>262045</td>
<td>262245</td>
<td>–</td>
</tr>
<tr>
<td>050</td>
<td>5</td>
<td>260050</td>
<td>261050</td>
<td>261150</td>
<td>262050</td>
<td>262250</td>
<td>–</td>
</tr>
<tr>
<td>060</td>
<td>6</td>
<td>260060</td>
<td>261060</td>
<td>261160</td>
<td>262060</td>
<td>262260</td>
<td>–</td>
</tr>
<tr>
<td>070</td>
<td>7</td>
<td>260070</td>
<td>261070</td>
<td>–</td>
<td>262070</td>
<td>262270</td>
<td>–</td>
</tr>
</tbody>
</table>

260000 *Standard Straight Shaft Burr*, stainless, sizes 006–070, length 7 cm, set of 15
261000 *Tungsten Carbide Straight Shaft Burr*, stainless, sizes 006–070, length 7 cm, set of 15
261100 *Tungsten Carbide Straight Shaft Burr*, with cross cut, stainless, sizes 014–060, length 7 cm, set of 6
262000 *Diamond Straight Shaft Burr*, stainless, sizes 006–070, length 7 cm, set of 15
262200 *Rapid Diamond Straight Shaft Burr*, stainless, with coarse diamond coating, sizes 023–070, length 7 cm, set of 9, color code: gold
Burrs

Straight Shaft Burrs, length 5.7 cm, for use with INTRA Drill Handpieces 252590, 252570, 252573

<table>
<thead>
<tr>
<th>Size</th>
<th>Dia. mm</th>
<th>Standard</th>
<th>Tungsten Carbide</th>
<th>Transverse Tungsten Carbide</th>
<th>Diamond</th>
<th>Diamond, coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td>014</td>
<td>1.4</td>
<td>649614K</td>
<td>649614HK</td>
<td>649614 Q</td>
<td>649714K</td>
<td>–</td>
</tr>
<tr>
<td>018</td>
<td>1.8</td>
<td>649618K</td>
<td>649618HK</td>
<td>–</td>
<td>649718K</td>
<td>–</td>
</tr>
<tr>
<td>023</td>
<td>2.3</td>
<td>649623K</td>
<td>649623HK</td>
<td>649623 Q</td>
<td>649723K</td>
<td>649723GK</td>
</tr>
<tr>
<td>027</td>
<td>2.7</td>
<td>649627K</td>
<td>649627HK</td>
<td>–</td>
<td>649727K</td>
<td>649727GK</td>
</tr>
<tr>
<td>031</td>
<td>3.1</td>
<td>649631K</td>
<td>649631HK</td>
<td>649631 Q</td>
<td>649731K</td>
<td>649731GK</td>
</tr>
<tr>
<td>035</td>
<td>3.5</td>
<td>649635K</td>
<td>649635HK</td>
<td>–</td>
<td>649735K</td>
<td>649735GK</td>
</tr>
<tr>
<td>040</td>
<td>4</td>
<td>649640K</td>
<td>649640HK</td>
<td>649640 Q</td>
<td>649740K</td>
<td>649740GK</td>
</tr>
<tr>
<td>045</td>
<td>4.5</td>
<td>649645K</td>
<td>649645HK</td>
<td>–</td>
<td>649745K</td>
<td>649745GK</td>
</tr>
<tr>
<td>050</td>
<td>5</td>
<td>649650K</td>
<td>649650HK</td>
<td>649650 Q</td>
<td>649750K</td>
<td>649750GK</td>
</tr>
<tr>
<td>060</td>
<td>6</td>
<td>649660K</td>
<td>649660HK</td>
<td>649660 Q</td>
<td>649760K</td>
<td>649760GK</td>
</tr>
<tr>
<td>070</td>
<td>7</td>
<td>649670K</td>
<td>649670HK</td>
<td>–</td>
<td>649770K</td>
<td>649770GK</td>
</tr>
</tbody>
</table>

649600K Standard Straight Shaft Burr, stainless, sizes 014–070, length 5.7 cm, set of 11
649600HK Tungsten Carbide Straight Shaft Burr, stainless, sizes 014–070, length 5.7 cm, set of 11
649700K Diamond Straight Shaft Burr, stainless, sizes 014–070, length 5.7 cm, set of 11
649700GK Rapid Diamond Straight Shaft Burr, stainless, with coarse diamond coating, sizes 023–070, length 5.7 cm, set of 9, color code: gold

Straight Shaft Burrs, cylindrical, barrel-shaped, and bud-shaped

<table>
<thead>
<tr>
<th>Size</th>
<th>Diam. mm</th>
<th>Cylindrical</th>
<th>Barrel-shaped</th>
<th>Bud-shaped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>length 7 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>2</td>
<td>–</td>
<td>262560</td>
<td>–</td>
</tr>
<tr>
<td>040</td>
<td>4</td>
<td>–</td>
<td>262561</td>
<td>–</td>
</tr>
<tr>
<td>050</td>
<td>5</td>
<td>265050</td>
<td>–</td>
<td>263050</td>
</tr>
<tr>
<td>060</td>
<td>6</td>
<td>265060</td>
<td>–</td>
<td>263060</td>
</tr>
<tr>
<td>070</td>
<td>7</td>
<td>265070</td>
<td>–</td>
<td>263070</td>
</tr>
</tbody>
</table>
Burrs and Accessories

LINDEMANN Burrs, conical, stainless, length 7 cm

<table>
<thead>
<tr>
<th>Size</th>
<th>Diameter mm</th>
<th>Conical sterilizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>1.8</td>
<td>263518</td>
</tr>
<tr>
<td>021</td>
<td>2.1</td>
<td>263521</td>
</tr>
<tr>
<td>023</td>
<td>2.3</td>
<td>263523</td>
</tr>
</tbody>
</table>

Burrs Accessories

- **Size Template**, for drills, stainless steel, sterilizable
- **Brush**, for cleaning atraumatic jaws, sterilizable, package of 5
- **Temporal Bone Holder**, bowl-shaped, with 3 fixation screws for tensioning the petrosal bone and with evacuation tube for irrigation liquid
Accessories for Burrs

280030 **Rack**, for 36 straight shaft burrs with a length of 7 cm, foldable, sterilizable, size 22 x 11.5 x 2 cm

280030K **Metal Bar**, for fixation at Rack 280030, to hold 18 burrs with a length of 7 cm and 16 burrs with a length of 5.7 cm, size 16 x 2.5 x 1 cm

280033 **Rack**, for 36 straight shaft burrs with a length of 9.5 cm, foldable, sterilizable, size 22 x 14 x 2 cm

280034 **Rack**, for 36 straight shaft burrs with a length of 12.5 cm, foldable, sterilizable, size 22 x 17 x 2 cm

280035 **Rack**, for 54 straight shaft burrs with a length of 5 cm (36 pieces) and 7 cm (18 pieces), foldable, sterilizable, size 22 x 12.5 x 3 cm

280040 **Rack**, flat model, to hold 21 straight shaft burrs with a length of up to 6 cm (6 pcs) and 7 cm (15 pcs), folding model, sterilizable, size 17.5 x 9.5 x 1.2 cm

280043 **Rack**, flat model, to hold 21 straight shaft burrs with a length of 7 cm (6 pcs) and 9.5 cm (15 pcs), folding model, sterilizable, size 17.5 x 11.5 x 1.2 cm

Please note: The burrs displayed are not included in the rack.
Accessories for Burrs

39552A Wire Tray, provides safe storage of accessories for KARL STORZ drilling/grinding systems during cleaning and sterilization, includes tray for small parts, for use with Rack 280030, rack not included

for storage of:
– Up to 6 drill handpieces
– Connecting cable
– EC micro motor
– Small parts

39552B Wire Tray, provides safe storage of accessories for KARL STORZ drilling/grinding systems during cleaning and sterilization, includes tray for small parts, for use with Rack 280030, rack included

for storage of:
– Up to 6 drill handpieces
– Connecting cable
– EC micro motor
– Up to 36 drill bits and burrs
– Small parts

Please note: The instruments displayed are not included in the sterilizing and storage trays.
UNIDRIVE® S III ENT SCB
High-Speed Handpieces, angled, 100,000 rpm

For use with High-Speed Drills, shaft diameter 3.17 mm and with High-Speed Micro Motor 20712033

<table>
<thead>
<tr>
<th>100,000 rpm</th>
<th>diameter 7.5 mm</th>
</tr>
</thead>
</table>

20712033

33 mm
7.5 mm
252680

53 mm
7.5 mm
252681

252680 **High-Speed Handpiece**, short, angled, 100,000 rpm, for use with High-Speed Micro-Motor 20712033

252681 **High-Speed Handpiece**, medium, angled, 100,000 rpm, for use with High-Speed Micro-Motor 20712033
UNIDRIVE® S III ENT SCB

High-Speed Handpieces, angled and straight, 60,000 rpm

For use with High-Speed Drills, shaft diameter 2.35 mm and with High-Speed Micro Motor 20712033

- **252660** High-Speed Handpiece, extra short, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20712033
- **252661** High-Speed Handpiece, short, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20712033
- **252690** High-Speed Handpiece, extra short, straight, 60,000 rpm, for use with High-Speed Micro-Motor 20712033
- **252691** High-Speed Handpiece, short, straight, 60,000 rpm, for use with High-Speed Micro-Motor 20712033
UNIDRIVE® S III ENT SCB
High-Speed Standard Burrs, High-Speed Diamond Burrs

For use with High-Speed Handpieces, 100,000 rpm

![252680](image1) ![252681](image2)

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350110S</td>
<td>350110M</td>
</tr>
<tr>
<td>2</td>
<td>350120S</td>
<td>350120M</td>
</tr>
<tr>
<td>3</td>
<td>350130S</td>
<td>350130M</td>
</tr>
<tr>
<td>4</td>
<td>350140S</td>
<td>350140M</td>
</tr>
<tr>
<td>5</td>
<td>350150S</td>
<td>350150M</td>
</tr>
<tr>
<td>6</td>
<td>350160S</td>
<td>350160M</td>
</tr>
<tr>
<td>7</td>
<td>350170S</td>
<td>350170M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350210S</td>
<td>350210M</td>
</tr>
<tr>
<td>2</td>
<td>350220S</td>
<td>350220M</td>
</tr>
<tr>
<td>3</td>
<td>350230S</td>
<td>350230M</td>
</tr>
<tr>
<td>4</td>
<td>350240S</td>
<td>350240M</td>
</tr>
<tr>
<td>5</td>
<td>350250S</td>
<td>350250M</td>
</tr>
<tr>
<td>6</td>
<td>350260S</td>
<td>350260M</td>
</tr>
<tr>
<td>7</td>
<td>350270S</td>
<td>350270M</td>
</tr>
</tbody>
</table>
UNIDRIVE® S III ENT SCB
High-Speed Diamond Burrs

For use with High-Speed Handpieces, 100,000 rpm

![Image of diamond burrs](image)

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>350330S</td>
<td>350330M</td>
</tr>
<tr>
<td>4</td>
<td>350340S</td>
<td>350340M</td>
</tr>
<tr>
<td>5</td>
<td>350350S</td>
<td>350350M</td>
</tr>
<tr>
<td>6</td>
<td>350360S</td>
<td>350360M</td>
</tr>
<tr>
<td>7</td>
<td>350370S</td>
<td>350370M</td>
</tr>
</tbody>
</table>
UNIDRIVE® S III ENT SCB
High-Speed Standard Burrs, High-Speed Diamond Burrs

For use with High-Speed Handpieces, 60,000 rpm

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra short</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>330110ES</td>
<td>330110S</td>
</tr>
<tr>
<td>2</td>
<td>330120ES</td>
<td>330120S</td>
</tr>
<tr>
<td>3</td>
<td>330130ES</td>
<td>330130S</td>
</tr>
<tr>
<td>4</td>
<td>330140ES</td>
<td>330140S</td>
</tr>
<tr>
<td>5</td>
<td>330150ES</td>
<td>330150S</td>
</tr>
<tr>
<td>6</td>
<td>330160ES</td>
<td>330160S</td>
</tr>
<tr>
<td>7</td>
<td>330170ES</td>
<td>330170S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra short</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>330206ES</td>
<td>330206S</td>
</tr>
<tr>
<td>1</td>
<td>330210ES</td>
<td>330210S</td>
</tr>
<tr>
<td>1.5</td>
<td>330215ES</td>
<td>330215S</td>
</tr>
<tr>
<td>2</td>
<td>330220ES</td>
<td>330220S</td>
</tr>
<tr>
<td>3</td>
<td>330230ES</td>
<td>330230S</td>
</tr>
<tr>
<td>4</td>
<td>330240ES</td>
<td>330240S</td>
</tr>
<tr>
<td>5</td>
<td>330250ES</td>
<td>330250S</td>
</tr>
<tr>
<td>6</td>
<td>330260ES</td>
<td>330260S</td>
</tr>
<tr>
<td>7</td>
<td>330270ES</td>
<td>330270S</td>
</tr>
</tbody>
</table>
UNIDRIVE® S III ENT SCB

High-Speed Diamond Burrs, High-Speed Cylinder Burrs,
LINDEMANN High-Speed Fluted Burrs

For use with High-Speed Handpieces, 60,000 rpm

High-Speed Coarse Diamond Burrs, 60,000 rpm, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra short</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>330330ES</td>
<td>330330S</td>
</tr>
<tr>
<td>4</td>
<td>330340ES</td>
<td>330340S</td>
</tr>
<tr>
<td>5</td>
<td>330350ES</td>
<td>330350S</td>
</tr>
<tr>
<td>6</td>
<td>330360ES</td>
<td>330360S</td>
</tr>
<tr>
<td>7</td>
<td>330370ES</td>
<td>330370S</td>
</tr>
</tbody>
</table>

High-Speed Cylinder Burrs, 60,000 rpm, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra short</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>330440ES</td>
<td>330440S</td>
</tr>
<tr>
<td>6</td>
<td>330460ES</td>
<td>330460S</td>
</tr>
</tbody>
</table>

LINDEMANN High-Speed Fluted Burrs, 60,000 rpm, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Size in mm (diameter x length)</th>
<th>extra short</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter 2.1/11</td>
<td>330511ES</td>
<td>330511S</td>
</tr>
<tr>
<td>Diameter 2.3/26</td>
<td>330526ES</td>
<td>330526S</td>
</tr>
</tbody>
</table>
Oscillating Micro Saws

254000 Oscillating Micro Saw, inbuilt irrigation tube, max. recommended number of revolutions 15,000 rpm corresponds to 15,000 oscillations/min., without saw blades, with fork wrench

Saw blades, short shaft, for use with 254000

254024 Saw Blade, short shaft, blade thickness 0.3 mm, width of blade 6 mm, working length 11 mm, package of 1, for use with 254000

254025 Same, width of blade 10 mm

254026 Same, width of blade 15 mm

254030 Same, blade thickness 0.15 mm, width of blade 6 mm

Saw blades, long shaft, for use with 254000

254027 Saw Blade, long shaft, blade thickness 0.3 mm, width of blade 6 mm, working length 26 mm, package of 1, for use with 254000

254028 Same, width of blade 10 mm

254029 Same, width of blade 15 mm

254031 Same, blade thickness 0.15 mm, width of blade 6 mm
Micro Compass Saws, Osseo Scalpel

![Micro Compass Saws, Osseo Scalpel](image)

254100 **Micro Sagittal Saw**, without saw blades, integrated irrigation tube, with fork wrench, recommended maximum speed: 20,000 rpm

Saw blades, for use with 254100

<table>
<thead>
<tr>
<th>Blade Code</th>
<th>Description</th>
<th>Working Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>254170</td>
<td>Saw Blade, blade thickness 0.35 mm, width of blade 4 mm, working length 10 mm, package of 12, for use with Micro Sagittal Saw 254100</td>
<td>10 mm</td>
</tr>
<tr>
<td>254171</td>
<td>Same, width of blade 6 mm, working length 10 mm</td>
<td>10 mm</td>
</tr>
<tr>
<td>254172</td>
<td>Same, width of blade 6 mm, working length 15 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>254173</td>
<td>Same, width of blade 10 mm, working length 15 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>254174</td>
<td>Same, width of blade 12 mm, working length 27 mm</td>
<td>27 mm</td>
</tr>
<tr>
<td>254175</td>
<td>Same, width of blade 6 mm, working length 10 mm</td>
<td>10 mm</td>
</tr>
</tbody>
</table>

254200 **Osseo Scalpel, Micro Saw**, with axial/sagittal channel, pendulum stroke, especially appropriate for 3-dimensional incision guiding, without saw blades, inbuilt irrigation tube, max. recommended number of revolution 20,000 rpm, with fork wrench

Saw blades, for use with 254200

<table>
<thead>
<tr>
<th>Blade Code</th>
<th>Description</th>
<th>Working Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>254235</td>
<td>Saw Blade, blade thickness 0.35 mm, working length 12 mm, package of 12, for use with Osseo Scalpel, Micro Saw 254200</td>
<td>12 mm</td>
</tr>
<tr>
<td>254236</td>
<td>Same, working length 18 mm</td>
<td>18 mm</td>
</tr>
<tr>
<td>254237</td>
<td>Same, working length 24 mm</td>
<td>24 mm</td>
</tr>
</tbody>
</table>
Micro Compass Saws

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>254300</td>
<td>Micro Compass Saw, without saw blades, detachable irrigation tube, with fork wrench, recommended maximum speed: 15,000 rpm</td>
</tr>
</tbody>
</table>

Saw blades, for use with 254300

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>254312</td>
<td>Saw Blade, blade thickness 0.25 mm, working length 11 mm, package of 12, for use with 254300</td>
</tr>
<tr>
<td>254313</td>
<td>Same, working length 14 mm</td>
</tr>
<tr>
<td>254314</td>
<td>Same, working length 18 mm</td>
</tr>
<tr>
<td>254315</td>
<td>Same, working length 22 mm</td>
</tr>
<tr>
<td>254316</td>
<td>Same, working length 26 mm</td>
</tr>
</tbody>
</table>
Micro Saws – Accessories

39553A Sterilizing and Storage Basket, provides safe storage of accessories for the KARL STORZ micro saw system during cleaning and sterilization, includes basket for small parts

for storage of:
- Up to 6 saw handpieces
- Connecting cable
- EC micro motor
- Saw blades
Dermatomes

Special features:
- For removing skin and mucosa
- Can be adapted to motor
- Lightweight construction

253000 Dermatome, with INTRA coupling, width of incision 12 mm, max. number of rev. 8000 rpm
253001 Replacement Blades, for dermatome 253000, width of incision 12 mm, non-sterile, package of 10

253100 Dermatome, with INTRA coupling, width of incision 25 mm, max. number of rev. 8000 rpm
253101 Replacement Blades, for dermatome 253100, width of incision 25 mm, non-sterile, package of 10

253200 Dermatome, with INTRA coupling, width of incision 50 mm, max. number of rev. 8000 rpm
253201 Replacement Blades, for dermatome 253200, width of cut 50 mm, non-sterile, package of 10

253300 Dermatome, with INTRA coupling, width of incision 75 mm, max. number of rev. 8000 rpm
253301 Replacement Blades, for dermatome 253300, width of incision 75 mm, non-sterile, package of 10
Dermatome – Accessories

39554A Sterilizing and Storage Basket, provides safe storage of accessories for the KARL STORZ dermatome system during cleaning and sterilization

for storage of:
- Up to 2 dermatomes
- Connecting cable
- EC micro motor with INTRA coupling
IMAGE1 S Camera System

Economical and future-proof
- Modular concept for flexible, rigid and 3D endoscopy as well as new technologies
- Forward and backward compatibility with video endoscopes and FULL HD camera heads

Innovative Design
- Dashboard: Complete overview with intuitive menu guidance
- Live menu: User-friendly and customizable
- Intelligent icons: Graphic representation changes when settings of connected devices or the entire system are adjusted

Automatic light source control
- Side-by-side view: Parallel display of standard image and the Visualization mode
- Multiple source control: IMAGE1 S allows the simultaneous display, processing and documentation of image information from two connected image sources, e.g., for hybrid operations

Dashboard

Live menu

Intelligent icons

Side-by-side view: Parallel display of standard image and Visualization mode
IMAGE1 S™ Camera System

Videoendoscopic Imaging
- Very high quality of endoscopic images in FULL HD
- Natural color rendition

Multiple IMAGE1 S™ technologies for homogeneous illumination, contrast enhancement and color shifting

FULL HD image

CLARA

FULL HD image

CHROMA

FULL HD image

SPECTRA A

FULL HD image

SPECTRA B

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.*
IMAGE1 S™ Camera System

TC200EN

IMAGE1 S CONNECT®, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

- **Mains Cord,** length 300 cm
- **DVI-D Connecting Cable,** length 300 cm
- **SCB Connecting Cable,** length 100 cm
- **USB Flash Drive,** 32 GB, USB silicone keyboard, with touchpad, US

*Available in the following languages: DE, ES, FR, IT, PT, RU

Specifications:

<table>
<thead>
<tr>
<th>HD video outputs</th>
<th>Format signal outputs</th>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 2x DVI-D</td>
<td>1920 x 1080p, 50/60 Hz</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>- 1x 3G-SDI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USB interface/SCB interface</th>
<th>Power frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x USB, (2x front, 2x rear)</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>2x 6-pin mini-DIN</td>
<td></td>
</tr>
</tbody>
</table>

TC300

IMAGE1 S H3-LINK, link module, for use with IMAGE1 FULL HD three-chip camera heads, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with **IMAGE1 S CONNECT® TC200EN**

<table>
<thead>
<tr>
<th>LINK video outputs</th>
<th>Power supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
</tbody>
</table>

TC300 (H3-Link)

<table>
<thead>
<tr>
<th>Camera System</th>
<th>TC300 (H3-Link)</th>
</tr>
</thead>
</table>
| Supported camera heads/video endoscopes | TH100, TH101, TH102, TH103, TH104, TH106 (fully compatible with IMAGE1 S™
| | 22220055-3, 22220056-3, 22220053-3, 22220060-3, 22220061-3, 22220054-3, 22220085-3 (compatible without IMAGE1 S™ technologies CLARA, CHROMA, SPECTRA™)

Specifications:

<table>
<thead>
<tr>
<th>Specifications</th>
<th>TC300 (H3-Link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK video outputs</td>
<td>1x</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions (w x h x d)</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.86 kg</td>
</tr>
</tbody>
</table>

* **SPECTRA A:** Not for sale in the U.S.
 SPECTRA B: Not for sale in the U.S.
IMAGE1 S™ Camera Heads

For use with IMAGE1 S™ Camera System
IMAGE1 S CONNECT® Module TC200EN, IMAGE1 S H3-LINK Module TC300
and with all IMAGE1 HUB™ HD Camera Control Units

TH100

IMAGE1 S H3-Z Three-Chip FULL HD Camera Head,
50/60 Hz, IMAGE1 S™-compatible, progressive scan,
soakable, gas- and plasma-sterilizable, with integrated
Parfocal Zoom Lens, focal length \(f = 15–31 \text{ mm (2x)} \),
2 freely programmable camera head buttons,
for use with IMAGE1 S™ and IMAGE1 HUB™ HD/HD

<table>
<thead>
<tr>
<th>Specifications:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE1 FULL HD Camera Heads</td>
<td>IMAGE1 S H3-Z</td>
</tr>
<tr>
<td>Product no.</td>
<td>TH100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x (\frac{1}{3}) ” CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>270 g</td>
</tr>
</tbody>
</table>
| Optical interface | integrated Parfocal Zoom Lens,
\(f = 15–31 \text{ mm (2x)} \) |
| Min. sensitivity | F 1.4/1.17 Lux |
| Grip mechanism | standard eyepiece adaptor |
| Cable | non-detachable |
| Cable length | 300 cm |

TH104

IMAGE1 S H3-ZA Three-Chip FULL HD Camera Head,
50/60 Hz, IMAGE1 S™-compatible, **autoclavable**,
progressive scan, soakable, gas- and plasma-sterilizable,
with integrated Parfocal Zoom Lens, focal length \(f = 15–31 \text{ mm (2x)} \),
2 freely programmable camera head buttons, for use with IMAGE1 S™ and IMAGE1 HUB™ HD/HD

<table>
<thead>
<tr>
<th>Specifications:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAGE1 FULL HD Camera Heads</td>
<td>IMAGE1 S H3-ZA</td>
</tr>
<tr>
<td>Product no.</td>
<td>TH104</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x (\frac{1}{3}) ” CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
</tbody>
</table>
| Optical interface | integrated Parfocal Zoom Lens,
\(f = 15–31 \text{ mm (2x)} \) |
| Min. sensitivity | F 1.4/1.17 Lux |
| Grip mechanism | standard eyepiece adaptor |
| Cable | non-detachable |
| Cable length | 300 cm |
Monitors

9619NB

19" HD Monitor,
color systems PAL/NTSC, max. screen
resolution 1280 x 1024, image format 4:3,
power supply 100–240 VAC, 50/60 Hz,
wall-mounted with VESA 100 adaption,
including:
External 24 VDC Power Supply
Mains Cord

9826NB

26" FULL HD Monitor,
wall-mounted with VESA 100 adaption,
color systems PAL/NTSC,
max. screen resolution 1920 x 1080,
image format 16:9,
power supply 100–240 VAC, 50/60 Hz
including:
External 24 VDC Power Supply
Mains Cord
Monitors

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th>Wall-mounted with VESA 100 adaption</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>9619NB</td>
<td>9826NB</td>
</tr>
<tr>
<td>Inputs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fibre Optic</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3G-SDI</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Outputs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>3G-SDI</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>Signal Format Display:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:3</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>5:4</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>16:9</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Picture-in-Picture</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>PAL/NTSC compatible</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Optional accessories:

- **9826SF** Pedestal, for monitor 9826NB
- **9626SF** Pedestal, for monitor 9619NB

Specifications:

<table>
<thead>
<tr>
<th>KARL STORZ HD and FULL HD Monitors</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop with pedestal</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>Product no.</td>
<td>9619NB</td>
<td>9826NB</td>
</tr>
<tr>
<td>Brightness</td>
<td>200 cd/m² (typ)</td>
<td>500 cd/m² (typ)</td>
</tr>
<tr>
<td>Max. viewing angle</td>
<td>178° vertical</td>
<td>178° vertical</td>
</tr>
<tr>
<td>Pixel distance</td>
<td>0.29 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Reaction time</td>
<td>5 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>700:1</td>
<td>1400:1</td>
</tr>
<tr>
<td>Mount</td>
<td>100 mm VESA</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Weight</td>
<td>7.6 kg</td>
<td>7.7 kg</td>
</tr>
<tr>
<td>Rated power</td>
<td>28 W</td>
<td>72 W</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0–40°C</td>
<td>5–35°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-20–60°C</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Rel. humidity</td>
<td>max. 85%</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>469.5 x 416 x 75.5 mm</td>
<td>643 x 396 x 87 mm</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Certified to</td>
<td>EN 60601-1, protection class IPX0</td>
<td>EN 60601-1, UL 60601-1, MDD93/42/EEC, protection class IPX2</td>
</tr>
</tbody>
</table>
Cold Light Fountains and Accessories

495NT Fiber Optic Light Cable, with straight connector, diameter 2.5 mm, length 180 cm
495NTW Fiber Optic Light Cable, with 90° deflection to the cold light fountain on the fountain side, diameter 2.5 mm, length 180 cm
495NTX Same, length 230 cm

Cold Light Fountain XENON NOVA® 175

20131501 Cold Light Fountain XENON NOVA® 175, power supply: 100–125 VAC/220–240 VAC, 50/60 Hz including:
 Mains Cord
20132026 XENON Spare Lamp, 175 watt, 15 volt

Cold Light Fountain XENON 300 SCB

20133101-1 Cold Light Fountain XENON 300 SCB with built-in antifog air-pump, and integrated KARL STORZ Communication Bus System SCB power supply: 100–125 VAC/220–240 VAC, 50/60 Hz including:
 Mains Cord
 SCB Connecting Cord, length 100 cm
20133027 Spare Lamp Module XENON with heat sink, 300 watt, 15 volt
20133028 XENON Spare Lamp, only, 300 watt, 15 volt
Equipment Cart

Equipment Cart
wide, tall, rides on 4 antistatic dual wheels equipped with locking brakes, 3 shelves, mains switch on top cover, energy beam package with integrated electrical subdistributors with 12 sockets, grounding plugs

Dimensions (w x h x d):
Equipment cart: 830 x 1474 x 730 mm
Shelf: 630 x 25 x 510 mm
Caster diameter: 150 mm

Consisting of:
- **Base module**, equipment cart, wide
- **Cover**, equipment cart, wide
- **Beam package**, equipment cart, tall
- 3x **Shelf**, wide
- **Drawer unit with lock**, wide
- 2x **Equipment rail**, long
- **Camera holder**
- 2x **Mains Cord**, length 100 cm

Monitor Swivel Arm, height- and side-adjustable, can be mounted on the left or right, swivel range 180°, overhang 780 mm, overhang from center 1170 mm, load capacity max. 15 kg, with monitor mount VESA 75 / 100, for use with equipment carts UGxxx
Recommended Accessories for Equipment Cart

Isolation Transformer, UG310
200 V–240 V; 2000 VA with 3 special mains sockets, automatic cut-out, 3 grounding plugs, dimensions: 330 x 90 x 495 mm (w x h x d), for use with Equipment Carts UGxxx

Earth Leakage Monitor, UG410
200 V–240 V, for mounting to equipment cart, control panel dimensions: 44 x 80 x 29 mm (w x h x d), for use with Isolation Transformer UG310

Monitor Holding Arm, UG510
height- and side-adjustable, tilting, mountable to the left or right, swivel range up to 320°, overhang 530 mm, load capacity max. 15 kg, monitor mount VESA 75 / 100, for use with Equipment Carts UGxxx
with the compliments of
KARL STORZ — ENDOSKOPE