NEAR-INFRARED ENDOSCOPY WITH INDOCYANINE GREEN IN OTOLARYNGOLOGY

Florian SCHMIDT
Orlando GUNTINAS-LICHIUS
NEAR-INFRARED ENDOSCOOPY WITH INDOCYANINE GREEN IN OTOLARYNGOLOGY

Florian SCHMIDT
Orlando GUNTINAS-LICHIUS

Department of Otolaryngology, Head and Neck Surgery
Jena University Hospital, Jena, Germany
Important notes:
Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any 3rd party publication(s) or links to any 3rd party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the 3rd party publication(s) or 3rd party websites and no guarantee is given for any other work or any other websites at all.

Near-Infrared Endoscopy with Indocyanine Green in Otolaryngology

Florian Schmidt and Orlando Guntinas-Lichius
Department of Otolaryngology, Head and Neck Surgery
Jena University Hospital, Jena, Germany

Correspondence address of the author:
Univ.-Prof. Dr. Orlando Guntinas-Lichius
Klinik und Poliklinik für Hals-, Nasen-, Ohrenheilkunde
Universitätsklinikum Jena
Lessingstrasse 2
07740 Jena, Germany
Phone: +49 (0) 36 41-93 5127
Fax: +49 (0) 36 41-9 35129
E-mail: orlando.guntinas@med.uni-jena.de

All rights reserved.
1st edition
© 2016 Endo:Press® GmbH
P.O. Box, 78503 Tuttlingen, Germany
Phone: +49 (0) 74 61/1 45 90
Fax: +49 (0) 74 61/708-529
E-mail: endopress@t-online.de

No part of this publication may be translated, reprinted or reproduced, transmitted in any form or by any means, electronic or mechanical, now known or hereafter invented, including photocopying and recording, or utilized in any information storage or retrieval system without the prior written permission of the copyright holder.

Editions in languages other than English and German are in preparation. For up-to-date information, please contact Endo:Press® GmbH at the address shown above.

Design and Composing:
Endo:Press® GmbH, Germany

Printing and Binding:
Straub Druck + Medien AG
Max-Planck-Straße 17, 78713 Schramberg, Germany

ISBN 978-3-89756-919-5
Table of Contents

1 Introduction ... 6

2 NIR Fluorescence Endoscopy with Indocyanine Green 7

3 Clinical Application of NIR Endoscopy in Otolaryngology 8

4 Illustrative Clinical Cases .. 9
 4.1 Laryngeal Carcinoma (Glottic) ... 9
 4.2 Oropharyngeal Carcinoma (Uvula and Soft Palate) 9
 4.3 Oropharyngeal Carcinoma (Soft Palate and Tonsil) 9
 4.4 Laryngeal Carcinoma (Supraglottic) 10
 4.5 Vocal Cord Polyp ... 10

5 Conclusions and Outlook .. 11

6 References ... 11
Introduction

Despite excellent advances in the diagnosis and treatment of head and neck tumors in recent years, most tumors still go undiagnosed until they have reached an advanced stage. As a result, 30–50% of patients who have received curative therapy go on to develop a locoregional recurrence with a poor prognosis.1 Besides a potentially long period of non-specific symptoms, difficult access to deep head and neck regions and field cancerization are among the reasons why it can be difficult to detect a head and neck tumor at an early stage. These same factors can also make it difficult to obtain clear margins (R0 resection) in the surgical removal of a tumor. Failure to obtain an R0 resection is a significant prognostic factor for local recurrence, which affects approximately 10–30% of patients with an advanced tumor in this setting. Because of field cancerization, the otolaryngologist who scrutinizes a suspicious lesion in the head and neck region may encounter a continuum of changes from inflammation to dysplasia and neoplasia with no clear dividing lines among them.2 An early-stage tumor may be difficult to distinguish from chronic inflammation and dysplastic change, and the margins of an advanced tumor may be difficult to define. The current standard – and limiting factor – for evaluating these changes is inspection under white light, which forms the basis of physician decision-making and tissue sampling for histopathologic analysis.

The ideal solution would be a rapid, noninvasive optical imaging technique that could facilitate the detection of tumors at an early stage (early tumor detection) while also enhancing the identification of tumor margins (tumor margin detection) and the differentiation of benign and malignant processes (tumor discrimination). Due to the small dimensions of spaces in the head and neck region, especially in the larynx, it is also desirable to detect and define the extent of benign processes (e.g., papillomas) with greater accuracy so that their resection will sacrifice as little healthy mucosa as possible and preserve maximum function.

Optical imaging with near-infrared (NIR) fluorescence is a relatively new technique for real-time visualization during surgical procedures. Additionally, indocyanine green (ICG) has been approved for use as a fluorescent dye. To date, ICG fluorescence imaging has been used in the head and neck region in the form of ICG angiography for evaluating the perfusion of free muscle flaps after ablative tumor surgery and for evaluating skull base tumors.3,7 Similarly, NIR fluorescence with ICG has been used to assess blood flow in paranasal sinus malignancies and direct the planning of intra-arterial chemotherapy.12 While ICG has become an established marker for sentinel node biopsies in other specialties, it has also been used in recent studies to direct sentinel node biopsies in patients with head and neck tumors.5,9

The technique has also been applied to other tumor entities including the bronchoscopic detection of pulmonary metastases, the endoscopic diagnosis of early gastric carcinoma, and the detection of hepatic metastasis at open surgery.1,8,11 Because even small, hypervascular neoplasms can generally be visualized with ICG, the technique is also of interest for evaluating a number of benign changes such as laryngeal polyps and Reinke edema.
In 1852, George Gabriel Stokes described the mineral ‘fluorite’, which emits blue light when exposed to electromagnetic radiation. He called this phenomenon ‘fluorescence’ and coined the term ‘fluorophores’ for compounds possessing that property. The ability to fluoresce is a common phenomenon in nature. It occurs when energy is absorbed by delocalized electrons in aromatic ring structures. The absorbed light energy raises the electron to a higher energy state. When the electron returns to its original state, it loses energy and emits a photon, which is perceived as fluorescent light. The emitted fluorescent light has less energy than the absorbed ‘exciting’ light, because some of the absorbed energy is converted to heat.

Aromatic ring structures are a major component of many biological substances such as DNA, proteins, and sugar. Since the 1960s, their ability to fluoresce has been utilized for fluorescence imaging in the biosciences and medicine. The oldest known near-infrared (NIR) fluorescent dye in medicine is indocyanine green (ICG), which was approved by the FDA for angiography in 1959. Today it has a range of applications that include angiography in the eye and liver and the testing of liver and cardiac function.

ICG has an absorption peak of $\lambda_{ex} = 805 \text{ nm}$ and an emission peak of $\lambda_{em} = 835 \text{ nm}$. The spectral properties of ICG in the NIR range of the spectrum preclude interference due to the autofluorescence of major blood constituents (hemoglobin and water). This results in a tissue detection depth of 0.5–1.5 cm for NIR fluorescence. Following intravenous injection, ICG binds to plasma proteins in the vascular bed and can be visualized. Because NIR is outside the visible range of wavelengths, the NIR light does not alter the surgical field of view for the head and neck surgeon.

ICG has a very low risk potential, and the estimated allergy risk is just 1 in 42,000. The use of ICG is contraindicated in patients with liver failure or an allergy to iodine, a small amount of which is present in the tracer.

Fig. 1 Simplified diagram showing the principle of fluorescence.

Fig. 2 Relationship between the near-infrared (NIR) range and visible light.
Clinical Application of NIR Endoscopy in Otolaryngology

The results presented below were all obtained with the KARL STORZ Near Infrared (NIR/ICG) system, which can be used for both standard white-light imaging and fluorescence imaging. Apart from the brilliant full-HD image quality in white-light mode, the system also provides background illumination with accurate color reproduction in NIR mode. Image quality can be optimized by activating the various IMAGE1 S modes (SPECTRA A*, SPECTRA B**, CLARA or CHROMA) via a software menu control.

The high user-friendliness of the system is appealing. The user can quickly switch between different operating modes by pressing a footswitch. Components are fully compatible with the current modular IMAGE1 S system, so the imaging station can easily be expanded for 3D imaging, flexible endoscopy, and open surgical procedures. Further details on the KARL STORZ NIR/ICG system and its components are given on pages 12 and 13 of this brochure.

The results presented here were documented in 52 patients treated at the Department of Otolaryngology, Head and Neck Surgery, at Jena University Hospital. All patients were examined under general anesthesia (indicated for the treatment of their disease, not for NIR endoscopy). The patients were informed about the off-label use of ICG. They underwent either panendoscopy or microlaryngoscopy, depending on the tumor location and whether the lesion was a suspected tumor or a malignancy. NIR endoscopy was performed as soon as the suspicious lesion was visualized and before it was biopsied; this was necessary to avoid loss of visualization due to bleeding from the biopsy site. The authors observed no complications. Two different sizes of 0° HOPKINS® endoscopes were used: diam. 5.8 mm, length 19 cm, and diam. 10 mm, length 20 cm, respectively.

Exclusion criteria from ICG NIR endoscopy were as follows:

- Autonomous thyroid adenoma.
- Severe impairment of renal, pulmonary or liver function.
- Age under 18 years.
- Refusal of informed consent to off-label use of ICG.

The established protocol for ICG NIR endoscopy was followed:

- The ICG powder (25 mg per bottle, e.g., ICG Pulsion® or a comparable brand) is dissolved in 15 mL of distilled water.
- The tumor or suspicious lesion is visualized.
- Five mL of the ICG solution is administered by i.v. bolus injection. The region of interest should show significant uptake within 1–2 minutes.
- The suspicious region is examined and video-documented with a 0° HOPKINS® endoscope in white-light mode and NIR mode. Additional documentation with other IMAGE1 S modes can be obtained as required.

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.
4 Illustrative Clinical Cases

Several typical illustrative cases are presented and described below.

4.1 Laryngeal Carcinoma (Glottic)

4.2 Oropharyngeal Carcinoma (Uvula and Soft Palate)

Fig. 4 Left-sided glottic carcinoma (a). The leukoplakic and hyperkeratotic areas typically do not show intravascular ICG fluorescence. Normally (see also Fig. 9) the ICG image shows fine submucous vascularity on the vocal cord. While the tumor margins are poorly visualized in the white-light image, especially anteriorly and anterolaterally (a, b), the tumor is clearly demarcated from surrounding healthy tissue in the NIR/ICG image (c, d).

Fig. 5 The tumor margins may be deceptive (broken line) when viewed under white light (a, b). The tumor margins actually run farther medially and superiorly in the soft palate on the right side (solid line), consistent with the homogeneous fluorescence in the NIR/ICG image (c, d).

4.3 Oropharyngeal Carcinoma (Soft Palate and Tonsil)

Fig. 6 The tumor has a small leukoplakic rim (broken line) in the white-light image, with some pooling of ICG in the tumor ulcerations. Actually the tumor has a broad rim, indicated most clearly by the fingerlike extension in the NIR/ICG image. * = uvula.
4.4 Laryngeal Carcinoma (Supraglottic)

Fig. 7 Example of a head and neck tumor. The circled areas (c) are magnified on the right, displaying regions of both homogeneous and very inhomogeneous signal with some pooling of ICG. Superficial vessels show ICG signal only in normal mucosa. Hyperkeratotic and leukoplakic areas may be completely ICG-negative. * = epiglottis.

Fig. 8 The same tumor as in Fig. 7, viewed under white light (a, c, e). The images were acquired in different IMAGE 1 S modes: CHROMA (b), SPECTRA A* (d) and SPECTRA B** (f).

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.

4.5 Vocal Cord Polyp

Fig. 9 The sharp division between the right vocal cord polyps and the edge of the vocal cord itself is defined more clearly in the NIR/ICG image due to the (probably subepithelial) vascular pattern (b) than in the white-light image (a). The vascular pattern throughout the NIR/ICG image is unlike that seen on the surface of a malignant tumor.
Near-Infrared Endoscopy with Indocyanine Green in Otolaryngology

Conclusions and Outlook

NIR/ICG endoscopy is easy to perform with the devices presented herein, and is safe for patients. A few minutes after injection of the dye, a stable fluorescent image is produced that remains discernible for up to 15 minutes during endoscopy (longer persistence was not investigated). Switching between white-light and ICG images and comparing the images (by choosing other IMAGE1 S modes, if necessary; this needs to be investigated by further study) is particularly helpful for improved differentiation between tumor, perifocal inflammation, and normal mucosa. The next step should be to validate these findings in a clinical study with targeted tissue sampling based on ICG images. Further study is also needed to determine whether NIR/ICG endoscopy is not only useful diagnostically but could also provide intraoperative guidance for tumor resections.

References

The KARL STORZ NIR/ICG System

1. **IMAGE1 S**
 - brilliant FULL HD image quality
 - ICG display in standard mode or SPECTRA A* mode

2. **NIR/ICG telescope and camera head**
 - 3-chip FULL HD camera head with high resolution, high light sensitivity and optimal NIR light sensitivity
 - telescopes for optimal fluorescence excitation and detection; can be used for white light and fluorescence modes
 - telescopes with various lengths and diameters

3. **D-LIGHT P light source** *(Xenon light source)*
 - best daylight spectrum; white light and fluorescence modes
 - with enhanced background display

4. **Footswitch**
 - fast switch between white light and fluorescence mode

5. **Autoclavable fiber optic light cable**
 - optimal light transmission in the white light and NIR spectral range

* SPECTRA A: Not for sale in the U.S.

It is recommended to check the suitability of the product for the intended procedure prior to use.
Near-Infrared Endoscopy with Indocyanine Green in Otolaryngology

Camera System

Camera CCU

Light Source

Camera Head

Light Cable

Telescope

Exoscope

IMAGE1 S System

IMAGE S CONNECT

TC 200

IMAGE1 S H3-LINK

TC 300

ICG

D-LIGHT P/ 20

1337 01-1

IMAGE1 S

H3-Z FI

TH 102

IMAGE1

H3-Z FI

2220085-3

Fiber Optic Light Cable

495 NAC/NCSC

HOPKINS® Telescope

26003 ACA/BCA/AGA/BGA

8710 AGA/8711 AGA

VITOM® II ICG

20916025 AGA

28272 CN/UGK/HC

28172 HM/HR

IMAGE 1 HUB™ System

IMAGE 1 HUB™ HD

22201011-112
Notes