MINIMALLY INVASIVE PERCUTANEOUS NEPHROLITHOLAPAXY (MIP)

Udo NAGELE
MINIMALLY INVASIVE PERCUTANEOUS NEPHROLITHOLAPAXY (MIP)

Udo NAGELE

Professor, M.D., Department of Urology and Andrology
General Hospital Hall i. T., Austria
Author's Note:
Some of the treatment algorithms in this monograph differ from current treatment guidelines and represent the author's personal opinion. The author will not accept any liability for treatment performed in deviation from guidelines. Such treatment must be discussed in detail and agreed upon individually with the patient.

The author would like to thank Hannes Schramm (Tübingen, Germany) for preparing the illustrations and Prof. David Schilling, M.D. (Frankfurt/Main, Germany) for granting permission to use the caseload charts (Fig. 1).

Important notes:
Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader's own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet. Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any 3rd party publication(s) or links to any 3rd party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the 3rd party publication(s) or 3rd party websites and no guarantee is given for any other work or any other websites at all.
Table of Contents

1 Basics ... 6
 1.1 Introduction 6
 1.2 History 7

2 Indications and Contraindications of MIP ... 8
 2.1 Indications 8
 2.2 Contraindications 8
 2.3 Preoperative Diagnostics 9

3 Surgical Preparation ... 9
 3.1 General Notes 9
 3.2 Consumables 9
 3.3 Patient Positioning and Repositioning 10
 Caveat: Vena cava Compression Syndrome 12

4 Surgical Technique ... 12
 4.1 Anesthesia 12
 4.2 Cystoscopy, Retrograde Pyelography,
 and Ureteral Catheter Placement 13
 MIP XS ... 13
 MIP S, M, and L 13
 4.3 Puncture – MIP XS/S, M, and L 14
 4.4 Dilation and Positioning of the Operating Sheath 14
 MIP XS/S ... 14
 MIP M and L 15
 4.5 Nephroscopy, Lithotripsy, and Stone Extraction 16
 MIP XS/S ... 16
 MIP M and L 17
 4.6 Optional Antegrade Ureteral Stenting
 and Nephrostomy Tract Closure 18
 MIP XS/S ... 18
 MIP M and L 18
 4.7 Management of Complications 19

5 Discussion ... 19

6 Conclusion ... 20

7 Author’s Note ... 20

8 References ... 21
1 Basics

1.1 Introduction

In an era where computed tomography is used to confirm stone-free condition24, the use of endourological stone treatment has become increasingly widely accepted. However, the initial euphoria surrounding the introduction of the third generation of flexible uretero-renoscopes has subsided due to limitations of use in routine urological practice. Percutaneous nephrolitholapaxy has proved superior in terms of stone-free rates with regard to the treatment of larger stone burdens and particularly in flexible ureterorenoscopy performed on patients with unfavorable kidney geometry. It also presents an alternative for treating small and large stones, particularly due to the minimally invasive procedure’s low complication rates and high primary stone-free rates.

In recent years, the concept of minimally invasive percutaneous nephrolitholapaxy (MIP) has become an accepted standard in miniaturized percutaneous surgery and has been corroborated in many publications.

The KARL STORZ Nagele MIP system allows atraumatic and effective stone treatment with low complication rates. It offers the following key advantages:

- Single-step dilation
- Automatic pressure management
- Stone extraction through “vacuum cleaner effect” or “whirlpool effect”
- Optional closure of the access tract using a gelatin-thrombin matrix

The success of the first-generation MIP system has spurred the effort to meet future challenges in endourology and has given rise to the introduction of next generation tools.

The second generation of the modular MIP system features four instrument sizes to match various indications. This enables urologists to adapt the benefits of minimally invasive percutaneous nephrolithotomy (PCNL) to individual stone sizes and choose the best possible lithotripsy option as determined by size.

PCNL has been used as a treatment option in clinical routine for many years. Based on retrospective analysis, minimally invasive surgical techniques are making headway and are considered well-tested and reliable. Complication rates are much lower than in standard PCNL, and the mean duration of operative procedures has dropped when compared to miniaturized PCNL (mini-PCNL) without the “vacuum cleaner effect” or “whirlpool effect”.1 Length of hospital stay has been reduced, and patient satisfaction has risen significantly.
1.2 History

In 1941, E. Rupel and R. Brown reported about the first stone removal procedure performed through a surgically created nephrostomy tract. In the course of the 1970s, J. Fernström and B. Johannsen perfected the approach and dilated the fistula tract in order to permit stone extraction. Following its initial publication, the technique underwent further modification until it became well-established and widely used. In 1977, it was P. Alken in collaboration with KARL STORZ, who managed to develop a percutaneous nephroscope that met the technical requirements for continuous suction / irrigation. This technical advancement was another leap forward and considerably facilitated the use of percutaneous lithotripsy. In 1982, J.W. Segura’s group followed. However, during the heyday of extracorporeal shock wave lithotripsy (ESWL) in the 1980s, urologists viewed PCNL with some skepticism due to its inherently invasive nature and high morbidity rates. The literature reported transfusion rates of up to 18%, extravasation rates of 7%, and sepsis rates of up to 5%, which finally contributed to a distinct decline in PCNL procedures.

Although ESWL still has some value in urolithiasis treatment, the initial enthusiasm has subsided due to high retreatment rates and relatively low stone-free rates, particularly in the inferior calyx and in cases of anatomical variation. As a result of improved instruments and further refinement of the surgical technique, percutaneous procedures have returned to routine clinical use, alongside endoscopic retrograde techniques. Advantages of percutaneous invasive techniques over ESWL or ureterorenoscopy (URS) include higher primary stone-free rates and efficient removal of large stones as well as improved outcomes in the treatment of stones located in unfavorable positions, such as in calyx diverticula or the inferior calyx.

To reduce the complication rates of standard PCNL, miniaturized percutaneous stone treatment procedures were developed before the turn of the millennium, but except for reduced blood loss, they failed to meet expectations.

In 2005, the author developed a modified technique for miniaturized PCNL. The approach was geared mainly toward pressure management (to avoid peak pressures above 30 cmH₂O, which may lead to pyelovenous reflux and fluid overload), ergonomic redesigning of instruments, and primary closure of the nephrostomy tract. Ultimately, this has resulted in the concept of minimally invasive percutaneous nephrolitholapaxy (MIP).

Inherent to the established concept of MIP is the fact that the indication range of percutaneous stone treatment now also includes smaller calculi. To render the procedure truly minimally invasive, the author opts to perform PCNL without nephrostomy.

As a side effect of these advancements, there has been a decline in the use of shock wave therapy in favor of those techniques that are based on a retrograde endoscopic and percutaneous concept of stone treatment (Fig. 1).

The new MIP generation of nephroscopes comes with more versions and even smaller diameters (MIP XS and S), and hence offers the chance for even less access trauma. In summary, this upgraded concept is geared to serve as an alternative to retrograde intrarenal surgery while at the same time allowing for an increase in size to select the best possible (including flexible) treatment option for the management of larger or multiple stones (MIP M and MIP L systems), thus taking most advantage of the specific features inherent to MIP.
2 Indications and Contraindications of MIP

2.1 Indications

Due to the wide range of instrument sizes available, MIP now encompasses many more indications than it did in the past.

MIP XS represents an alternative to flexible ureterorenoscopy (URS) for treating kidney stones ≤ 6–8 mm in size in the inferior calyx if access is impossible or has failed, for instance due to ureteral stenosis, mismatch of calyceal radius and instrument radius of curvature, or in case of a dead-end situation.12, 31

MIP S is used to treat calculi in the inferior calyx that are 6–12 mm in size (typically stones that cannot be easily moved into other renal calyces via flexible URS, with correspondingly lower stone-free rates associated with in situ disintegration).20 MIP M covers 12–24 mm stones in all calyces and in the renal pelvis; in case of a large stone burden > 24 mm, MIP L is available for straightforward stone treatment.

Additional indications include special cases such as diverticular stones and other anatomical variations as well as stone persistence following ESWL (Fig. 2).

2.2 Contraindications

The contraindications for percutaneous stone removal are essentially the same as those for transurethral treatment. In addition, particular consideration should be given to coagulation disorders and anatomical abnormalities that may complicate puncture – such as renal malrotation, morbid obesity with larger skin-to-stone distance, skeletal deformities, etc.

Untreated urinary tract infections and pregnancy must be ruled out.20

Further contraindications for this procedure are typically at the discretion of the anesthesiologist.

Fig. 2 Minimally Invasive Percutaneous Nephrolitholapaxy (MIP) treatment algorithm according to U. Nagele (2015).
2.3 Preoperative Diagnostics

Patient preparation for MIP is similar to preparation for other endoscopic procedures to treat nephrolithiasis. First, take a detailed medical history and ensure diagnostic clarification of symptoms. An adequate, most recent diagnostic imaging survey should typically be available, e.g., low-dose unenhanced computed tomography and assessment of calculi in the bone window.

In some cases, additional functional sonography or contrast-enhanced computed tomography may facilitate renal puncture. The full serum chemistry, blood count, kidney and liver function parameters, coagulation parameters, and urine status, possibly with urine culture, are taken preoperatively. Antibiotic prophylaxis is administered based on an antibiogram.

3 Surgical Preparation

3.1 General Notes

Carefully preparing the required MIP equipment guarantees a smooth workflow during surgery. First, check the technical armamentarium, such as the video camera system, X-ray system, ultrasound equipment, lithotripter, etc., make sure that instruments and consumables are complete and in working order, and warm up the irrigation solution.

If necessary, shave the lateral abdomen on the operative side before the procedure to achieve a completely clear ultrasound image and prevent wound healing problems. Placing the venous line on the patient’s contralateral arm and attaching the tube laterally with respect to positioning changes will facilitate optimal intraoperative care on the part of the anesthesiologist.

Disinfect genitals using a mucosal disinfectant and, with the patient in prone position, disinfect the skin of the surgical site using an iodine-containing antiseptic agent.

3.2 Consumables

Mono-J or Occlusion Ureteral Catheters

Use of a mono-J (MJ) catheter is generally optional in MIP, but it is mandatory when using the MIP XS system since a large lumen is required for suctioning the irrigation fluid and stone dust. The catheter is fixed in place at the buttocks and is connected to the UROMAT E.A.S.I.™ (microprocessor-controlled suction/irrigation pump, KARL STORZ Tuttlingen). Advantages of MJ catheters over balloon catheters include reduced trauma to the ureteropelvic junction, which typically obviates the need for extended postoperative drainage via a double-J (DJ) catheter, and the fact that the MJ catheter can be removed on the first postoperative day.

Alternatively, a ureteral occlusion catheter can be placed in the pelvicalyceal system. The advantage of ureteral balloon catheters lies in the fact that the balloon volume can be blocked above the ureteropelvic junction.

Doing so prevents calculi from passing intraoperatively and additionally allows extracorporeal fixation of the balloon catheter at the buttocks under slight tension, which caudally dislodges the kidney to obviate supracostal puncture. Disadvantages of occlusion catheters include their low irrigation volume and swelling at the ureteropelvic junction as mentioned above.

Both catheters permit retrograde pyelography.

Puncture Needle

For puncture under sonographic guidance, use a puncture needle with pyramid tip or a sonographically visible material alteration at the tip to ensure echogenicity throughout the procedure. Two-part puncture needles can be easily handled and are sufficiently stable.
Guide Wire and Safety Wire

Guide wires with a hydrophilic floppy tip and semi-rigid shaft (0.035") are recommended. These guide wires reduce the risk of pelvicalyceal system perforation, and their material properties facilitate advancing the wire into the pelvicalyceal system or the ureter.

The same wire is used as safety wire; a 0.025" guide wire is required only when using the MIP XS/S system to apply the wire under nephroscopic view, for instance in the ureter.

Multi-length DJ catheter

If placing a DJ catheter at the end of the procedure, a steerable multi-length double-J (DJ) catheter can be used. These products facilitate antegrade insertion and can be easily disconnected from the pusher as needed as well as reconnected later if necessary. In addition, the length of the DJ catheter is variable and can be adapted to the specific situation.

Gelatin-thrombin matrix

Human gelatin-thrombin matrix is hyperosmolar. It achieves hemostasis by inducing the coagulation cascade and by swelling. The matrix should be prepared on time and then inserted into the puncture channel through the Amplatz sheath using the special applicator included in the MIP system to achieve closure. The matrix closes the puncture channel with slight compression, ensures optimal hemostasis, and prevents urine extravasation. In case of misrouted application, the gelatin-thrombin matrix fully dissolves in urine within hours.

3.3 Patient Positioning and Repositioning

For intubation purposes, the patient is initially positioned supine. For retrograde insertion of the ureteral and bladder catheter, the patient is placed in lithotomy position, ensuring pressure relief.

If puncture needs to be performed in prone position, standardized patient repositioning is recommended. Changing the patient’s position requires close coordination between members of the surgical team.

To facilitate change of position, first place a draw sheet crosswise on the operating table.

This sheet assists staff in gently repositioning the patient step by step (Fig. 3a–i).

With the patient in prone position, place a weight-adjusted inflatable kidney rest under the costal arch at the level of the renal angle (Fig. 4).

Fig. 3
d Patient position unchanged. Place a fanfolded second sheet, extending to the center of the operating table.
e Turn the patient to supine position. Place the right hand under the buttocks and the left hand on the abdomen.
f Turn the patient onto the right side. Now, the fanfolded half of the previously placed second sheet is visible.

g While maintaining the right lateral decubitus position, now pull on the fanfolded edge of the second sheet applying moderate force …

h … until the patient’s back is at the opposite edge of the operating table. With assistive stabilization from the other side using the first sheet, the patient gently rolls into the desired prone position.
i The first sheet can now be removed. With the aid of the remaining sheet, the patient can be safely and easily lifted, and an inflatable cushion can be easily placed below the costal arch at the level of the renal angle.

Fig. 4 Proper positioning of the inflatable kidney rest to facilitate renal puncture. This allows holding the kidney “in place” below the 11th/12th rib.
Surgical percutaneous stone removal is performed in three steps. After patient intubation, an MJ or occlusion catheter and an indwelling bladder catheter are first inserted in lithotomy position. In the second step, the patient is placed prone and carefully padded. In the third step, the kidney is punctured, followed by the actual stone removal in percutaneous technique involving nephroscopy, lithotripsy, stone retrieval, optional antegrade ureteral stenting, and closure of the access tract.

4.1 Anesthesia

Endotracheal anesthesia is the suitable anesthesia method for PCNL in prone position. Regional anesthesia is not a suitable alternative for this procedure due to the special prone positioning. General anesthesia is administered in the form of total intravenous anesthesia (TIVA), typically using the hypnotic propofol (Disoprivan® 1%) in combination with the highly potent ultra-short-acting opioid remifentanil (Ultiva®). Relaxation is exclusively administered for intubation. Due to their very short half-life periods, these anesthetics allow precise anesthesia management.

The special prone position gives rise to various considerations in anesthesiological care:

1) Controlled ventilation typically requires higher ventilation pressures due to the prone position itself and due to the use of the kidney rest below the costal arch. Use a pressure-controlled ventilation (PCV) mode, which typically ensures good ventilation even for patients with chronic respiratory disease (asthma, COPD, etc.). In rare extreme situations, the volume of the kidney rest has to be reduced.

2) The inflated cushion placed in the upper abdominal area increases intra-abdominal pressure via compression of the intra-abdominal parenchymal structures, potentially resulting in a vena cava compression syndrome, occasionally with severe hypotension. Patient-specific prehydration with about 1–1.5 l crystalloid solution typically compensates the relative hypovolemia caused by compression of the vena cava.

Caveat: Vena cava Compression Syndrome

Position the head only on a flat gel pad to maintain patient flexion. Place both arms alongside the body to ensure physiological shoulder positioning and prevent positioning injuries. Ensure adequate pressure relief at the head, joints, and pressure-sensitive regions (Fig. 5).
In case of persistent hypotension, particularly in patients with existing arterial hypertension, administer catecholamine therapy for the duration of surgery.

3) In difficult cases, surgery may take up to several hours. This further increases the importance of correct patient positioning to prevent pressure/positioning injuries (pressure ulcers, compression of facial soft tissues, reclination of the cervical spine, etc.).

4) In light of the potentially large quantities of irrigation fluid used, make sure that the patient is protected from direct exposure. Consistent application of heat through warm irrigation fluid, heating pads, etc., is paramount because patients undergoing this procedure can be at significant risk of perioperative hypothermia. Measuring the patient’s core temperature is recommended in prolonged procedures.

4.2 Cystoscopy, Retrograde Pyelography, and Ureteral Catheter Placement

MIP XS
Once the patient assumes a lithotomy position, first perform cystoscopy and rule out the presence of any bladder tumors.

Intubate the corresponding orifice with an MJ catheter via a guide wire and advance the catheter. The position of the MJ catheter is taken to the records using retrograde pyelography. The loop of the ureteral catheter should be located in the renal pelvis. If necessary, repeat retrograde visualization of the renal pelvicalyceal system.

Fix the catheter in place on the inserted bladder catheter. Close the bladder and ureteral catheters.

Next, place the patient in prone position.

MIP S, M, and L
Perform thorough cystoscopy as with the MIP XS system. Insert either an MJ catheter as with MIP XS or a ureteral balloon catheter. In the latter case, locate the corresponding orifice, intubate with the occlusion catheter, and advance it into the ureter. If it cannot be advanced, use a guide wire.

Perform retrograde pyelography via the inserted ureteral stent. Then advance the ureteral balloon catheter into the renal pelvis and block above the ureteropelvic junction with no more than 2–3 ml of a mixture of distilled water and contrast agent following fluoroscopic confirmation of the balloon position. If necessary, conduct another retrograde visualization of the renal pelvicalyceal system and ensure radiological documentation (Fig. 6).

The balloon can be used to take advantage of the normal mobility of healthy kidneys (without history of pyelonephritis or prior surgery) to mobilize the kidney caudally by up to one vertebra.

Insert an indwelling bladder catheter – close the indwelling bladder catheter and ureteral catheter (Fig. 7).

In case of sharp or pointy calculi, use an MJ catheter instead of the occlusion catheter to prevent balloon rupture.

Next, place the patient in prone position.

Fig. 6 Cystoscopy and placement of the ureteral catheter under fluoroscopic vision in a patient in lithotomy position.

Fig. 7 Closure of the ureteral catheter and indwelling bladder catheter.
4.3 Puncture – MIP XS/S, M, and L

After placing the patient prone and applying an inflatable kidney rest under the xyphoid, sonographically check the kidney position before sterile draping. Connect the bladder catheter to the drainage bag, sterilize the surgical site by wiping it down, and drape it. Then carefully begin to dilate the renal pelvicalyceal system via the MJ or balloon catheter attached to the patient’s buttocks using a mixture of methylthioninium chloride and X-ray contrast agent. Doing so improves the condition for the procedure.

Adding blue dye to the contrast agent allows to readily evaluate success or failure of puncture.

Under sonographic and X-ray view, surgeons typically aim for the calculus-containing calyx. To avoid hemorrhage and achieve the best possible starting conditions for successful stone extraction, the puncture trajectory should pass through the papilla at an angle corresponding to the calyceal axis (Figs. 8, 9). Note that the posterior calyx is punctured.

4.4 Dilation and Positioning of the Operating Sheath

MIP XS/S

Following successful puncture, insert a guide wire with hydrophilic floppy tip into the pelvicalyceal system via the puncture cannula. Try to place the wire securely in the renal pelvis or calyx or, if possible, pass the ureteral catheter into the bladder.

Then perform a skin incision along the puncture cannula. After removing the cannula, enlarge the access tract with a metal dilator using the one-step bougie technique. Via this dilator, the suitable operating sheath is placed in the renal pelvicalyceal system. Dilation and advancement of the access sheath is accomplished under X-ray view (Fig. 10).

Remove the metal dilator, leaving the guide wire in place. Insert a second guide wire directly through the operating sheath under fluoroscopy. If a second guide wire is to be inserted under endoscopic vision via the nephroscope’s working channel, please note that it must not be larger than 0.025".

Fig. 8 Kidney position with patient in prone position. Axially aligned puncture of the posterior renal calyx provides optimal access to the renal pelvis and anterior calyces.

Fig. 9 Axially aligned puncture of the renal pelvicalyceal system via the papilla of the posterior calyx.

Fig. 10 X-ray position check of the inserted operating sheath.
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

Also note that concurrent nephroscopy cannot be performed when a wire is located in the XS/S operating sheath. While securing the wires, remove the Amplatz sheath again and re-insert the bougie over one of the guide wires in the dilated puncture channel to access the pelvicalyceal system (Seldinger technique). Proceed as rapidly as possible to prevent bleeding and ensuing clot formation.

The safety wire then securely rests between the dilated puncture channel and the operating sheath.

MIP M and L

As discussed under the MIP XS/S system, following puncture of the renal pelvicalyceal system, insert a guide wire with hydrophilic floppy tip into the pelvicalyceal system via the puncture cannula. Try to place the wire securely in the renal pelvis or calyx or ideally advance it via the ureter into the bladder.

Place a deep skin incision along the puncture cannula. After removing the cannula, enlarge the access tract with a metal dilator using the one-step bougie technique under X-ray view. Via the dilator’s eccentric distal lumen (Fig. 11), the correct position in the pelvicalyceal system can be assessed on the basis of the reflux of the methylthioninium chloride mixture. Next, the appropriate Amplatz sheath is placed in the renal pelvicalyceal system under fluoroscopy (Figs. 12, 13).

Withdraw the metal bougie while leaving the guide wire in place and conduct initial exploratory nephroscopy – which is possible with wires up to 0.038". A second wire can then be optimally positioned through the sheath or optionally inserted under endoscopic vision via the nephroscope’s working channel (up to 0.038").

Using the Seldinger technique, as with MIP XS/S, remove the Amplatz sheath while securing the wires, pass the bougie over one of the guide wires through the dilated puncture channel into the pelvicalyceal system, and advance the operating sheath again under X-ray view. In this way, the safety wire is fixed in place between the operating sheath and the dilated puncture channel.

The guide wire remaining in the lumen of the Amplatz sheath can now be removed.
4.5 Nephroscopy, Lithotripsy, and Stone Extraction

MIP XS/S
Before starting a detailed nephroscopic examination with the MIP XS system (Fig. 14a), irrigation fluid inflow and outflow should be established via the UROMAT E.A.S.I.™ (KARL STORZ Tuttlingen) in continuous flow mode. For this purpose, first connect the inflow tubing to the nephroscope to allow direct application of the irrigation fluid through the device. Connect suction to the MJ catheter to ensure outflow of irrigation fluid and stone dust (Fig. 14). If necessary, the same procedure can be used with the MIP S system.

Following exploratory nephroscopy and orientation, you can proceed with lithotripsy of the calculus. A laser fiber up to 1.9 Fr. in size (up to 300 µm, depending on design) may also be introduced through the nephroscope’s working channel. First set up the laser system following manufacturer instructions. To achieve maximum stone dusting, in principle, the default setting should involve a high pulse repetition rate, low energy output, and if possible, long pulse length. To achieve fragmentation, a low pulse rate, high energy output, and if possible, short pulse length is chosen. Ideally, the kidney stone is comminuted and the stone dust suctioned off via continuous flow irrigation through the MJ catheter. Of course, the stone may also be fragmented and flushed out via the MIP S operating sheath, taking advantage of the vacuum cleaner effect discussed below.

Fig. 14 Schematic diagram of percutaneous nephrolitholapaxy with the MIP XS system. MIP XS/S – 7.5 Fr. nephroscope with a 3-Fr. irrigation channel and a 2-Fr. working channel (a).
MIP M and L

First perform another exploratory nephroscopy to view the calculus and make sure that it is positioned immediately in front of the nephroscope tip.

In case of multiple calculi that are smaller than the sheath’s inner diameter, you may start extraction immediately. When using the MIP M, larger calculi can be disintegrated using ballistic lithotripsy (probes up to 5 Fr.) (Fig. 15) or using lasers with fibers up to 380 µm in size. It is vital to avoid generating many tiny fragments because their extraction can be difficult and time-consuming. MIP L also allows the alternative use of ultrasound lithotripsy with transducers up to 11.5 Fr. in size. Additional suction via the ultrasound transducer is not required taking into account the “vacuum cleaner effect”.

The optimized design of the operating sheath – featuring a specially shaped lead-in section at the proximal end – facilitates stone retrieval taking advantage of the “vacuum cleaner effect”. Special sheath geometry and concomitant pressure control significantly contribute to the prevention of pyelovenous reflux and fluid overload. When withdrawing the instrument under continuous flow of irrigation fluid, a vortex develops in the lumen of the working sheath inducing a vacuum effect (“vacuum cleaner effect”) (Figs. 16a, b). Owing to this effect, stone fragments and stone dust are flushed out through the sheath without necessitating the use of a stone basket.
4.6 Optional Antegrade Ureteral Stenting and Nephrostomy Tract Closure

MIP XS/S
Provided a stone-free status is confirmed both by nephroscopic and fluoroscopic evaluation, the guide wire and operating sheath can be removed under visual control. Antegrade ureteral catheterization is not necessary because the primary MJ catheter can be left in place to ensure renal drainage. Manual compression of the puncture channel for about 2–3 minutes is recommended. If profuse bleeding is noted in the nephroscopy access tract, a gelatin-thrombin matrix can be applied to the puncture channel using the properly fitting two-part applicator. Steri-Strips® are sufficient for skin closure.

Ureteral and bladder catheters are generally removed on the first postoperative day, following sonographic assessment of renal drainage. Low-dose computed tomography within the first postoperative month is used to confirm a stone-free status.

MIP M and L
First verify the stone-free status via endoscopy and X-ray. If a balloon catheter was used and the safety wire could not be advanced into the bladder via an antegrade approach, insert a guide wire in retrograde fashion through the ureteral catheter. With the aid of the nephroscope, guide it to the outside through the operating sheath using flexible grasping forceps. Then unblock the occlusion catheter and withdraw it, leaving the guide wire in place.

Typically, a DJ catheter (8 Fr.) is then inserted in antegrade direction (Fig. 19). Once proper placement of the DJ catheter in the bladder has been confirmed under fluoroscopy, disconnect the pusher of the ureteral stent in the renal pelvicalyceal system. If necessary, readjust the proximal end using the nephroscope and flexible grasping forceps. When using an MJ catheter, this maneuver is typically not necessary, and the MJ catheter can be left in place until the first postoperative day. Only in case of pelvicalyceal injuries or residual calculi, insert a DJ catheter as described above.

Once the ureteral stent has been correctly positioned, retract the nephroscope sheath to the junction between urothelium and parenchyma. Next, withdraw the nephroscope and apply the hemostatic matrix (gelatin-thrombin matrix) to the access tract with the aid of the two-part applicator while retracting the applicator. (Figs. 20, 21). Only the kidney needs to be sealed; the hemostatic agent does not need to be applied to the renal fascia.

Fig. 19 Antegrade ureteral stenting via the MIP operating sheath.

Fig. 20 Inserting the gelatin-thrombin matrix using the MIP applicator to close the percutaneous access tract.

Fig. 21 Pushing on the special mandrin causes the remaining hemostatic matrix to be released from the applicator.
Ideally, only seal the tract through the renal parenchyma from the urothelium to the pararenal space. Likewise, sealing of the puncture channel passing through the trunk muscles is not required. Close the skin with Steri-Strips®. Leave the bladder catheter in place until the first postoperative day. The DJ stent is typically removed after 5–7 days. If an MJ catheter is used instead, remove it on the first postoperative day following renal sonography.

4.7 Management of Complications

Intraoperative complications of MIP may include hemorrhage. First assess the blood loss volume and consider terminating the surgery in consultation with the anesthesiologist if the patient is unstable. The access tract is typically closed using a hemostatic matrix as described above. In case of residual stone load and profuse bleeding, an alternative approach is placement of a percutaneous nephrostomy catheter and tamponade of the renal pelvicalyceal system. In case of larger residual calculi, a second-look MIP can be easily performed. In case of hemodynamic instability, conduct a computed tomography with arterial phase enhancement and close the artery involved by endovascular coiling, if necessary.

Despite careful surgical preparation, pyuria caused by an occluding stone may only be noticeable after puncture. In that case, it is recommended to place a nephrostomy catheter and drain the kidney, administer antibiotic therapy following antibiotic susceptibility testing. Moreover, you may need to plan a second-look MIP. If access to the renal pelvicalyceal system via the Amplatz sheath is lost, methylthioninium chloride can be instilled via the ureteral catheter, and the surgeon can attempt probing the puncture channel with a guide wire and tracking the blue contrast agent into the pelvicalyceal system with the nephroscope.

In case of rupture of the renal pelvicalyceal system without injury to adjacent organs, e.g., due to excessive dilation of the balloon catheter or failed puncture, surgery can be continued since the low-pressure irrigation system should prevent the occurrence of any significant complications. However, be aware that immediate clarification is needed, if there are any signs of impending complication.

5 Discussion

Percutaneous stone treatment was initially associated with considerable morbidity rates. Due to advancements in terms of surgical technique and instrumentation, complication rates were seen to decline. Nevertheless, the transfusion rate can be as high as 18%.19

In its original approach, miniature PCNL (mini-PCNL) was geared toward treating pediatric patients,11 but subsequently, the procedure was also used on adult patients10,17 and combined with nephrostomy-free techniques.5 Advantages of minimally invasive nephrostomy-free procedures include lower morbidity, less postoperative pain, and shorter recovery.27 Mini-PCNL has failed to meet expectations, except for reduced bleeding complications.6,16 In an effort to further reduce morbidity rates, minimally invasive percutaneous stone treatment (MIP) was introduced, which uses the smallest-diameter working channel necessary for effective stone treatment as well as single-step dilation and a low-pressure system throughout the entire surgery (Fig. 22).

![Fig. 22 Comparison of peak intrarenal pressures (cmH2O) recorded at minute intervals with various nephroscope sheaths.](image-url)
Additional key features of the MIP concept are stone retrieval utilizing the “vacuum cleaner effect” (or suction of stone dust via the MJ catheter with the XS system) and a nephrostomy-free approach with optional closure of the access tract.22

Use of a special nephroscope sheath has shown that intrarenal pressure remains below the irrigation pressure required for intrarenal reflux.21 The “vacuum cleaner effect” was first described and explained by Nicklas et al.23 It allows the retrieval of stone fragments as well as the continuous removal of stone dust to ensure a completely stone-free status. Combining all the factors that are a sine qua non for a minimally invasive approach (Fig. 23) has reduced the intraoperative stress response to levels found in shock wave therapy or ureterorenoscopy.15

The surgical technique is easy to learn, even for surgeons without experience in percutaneous stone therapy. Only initially, surgeons can be faced with a slightly longer duration of surgery, increased complication rates and lower stone-free rates.26

Originally, the method was mainly used to treat smaller stones, but it was Abdelhafiez et al.1, 2 who demonstrated effective treatment also in cases of large stone burdens and even staghorn calculi.

Based on our own experience, we hold the opinion that minimally invasive nephrolitholapaxy (MIP) has earned its place alongside ESWL and URS in the treatment of stones of the pelvicalyceal system.14 To date, experience suggests, that MIP is associated with much lower complication rates than conventional percutaneous stone therapy. Considerable differences to classic PCNL are particularly observed in terms of postoperative fever, septicemia, and transfusion rates.1, 30

In order to comply with the basics of a truly minimally invasive approach, a complete set of instruments, available in various sizes/diameters (XS, S, M, and L), has been developed and introduced on the market. Choosing the proper MIP instruments, the surgeon is enabled to utilize a standardized surgical approach for treating a wide range of indications, from small kidney stones to large staghorn calculi. This minimally invasive technique permits high stone-free rates to be achieved rapidly and effectively with few complications. Even inexperienced surgeons will benefit from a steep learning curve, which facilitates implementation of the standardized procedure in clinical routine.26

6 Conclusion

7 Author’s Note

Some of the treatment algorithms in this monograph differ from current treatment guidelines and represent the author’s personal opinion. The author will not accept any liability for treatment performed in deviation from guidelines. Such treatment must be discussed in detail and agreed upon individually with the patient.
References

Universal Cysto-Urethroscope
for Outpatient Cysto-Urethroscopy

17 Fr., working length 22 cm

Special Features:
● Minimal discomfort for the patient
● Biopsies also for prostate region
● Foreign body retrieval
● Treatment of strictures and bladder stones
● Easy to use

● Atraumatic instrument tip
● High stability
● For use with semirigid and flexible forceps
● For inserting urethral splints

Universal Cysto-Urethroscope, with HOPKINS®
forward-oblique telescope 30°, enlarged view,
autoclavable, 17 Fr., fiber optic light transmission incorporated,
7 Fr. working channel and 2 LUER-Lock cones,
color code: red-yellow

7 Fr., length 40 cm,
for use with Universal Cysto-Urethroscope 27035 BA

Biopsy Forceps, semirigid,
double action jaws, 7 Fr., length 40 cm

Grasping Forceps, semirigid,
double action jaws, 7 Fr., length 40 cm

Forceps, semirigid, through-cutting,
single action jaws, 7 Fr., length 40 cm

Hook Scissors, semirigid, serrated,
double action jaws, 7 Fr., length 40 cm

It is recommended to check the suitability of the product for the intended procedure prior to use.
Video Cysto-Urethroscopes
with CCD chip technology

Special Features:
- 6.5 Fr. working channel
- Sterilizable via EtO and FO gas, Steris® and Sterrad®
- Easy to handle without requiring an additional light cable and camera head

Expanded PDD version 11272 VPI/VNIU:
- Equipped with special PDD filter for use in white light mode as well as photodynamic diagnosis
- Early recognition of tumors due to better visualization of, among others, carcinoma in situ
- Integrated suction unit drains the bladder faster
- For use with the high-performance light source D-LIGHT C/AF
Video Cysto-Urethroscopes
with CCD chip technology

16 Fr.

<table>
<thead>
<tr>
<th>Order no.</th>
<th>Video Cysto-Urethroscopes</th>
<th>Deflection of distal tip</th>
<th>Direction of view</th>
<th>Angle of view</th>
<th>Working length</th>
<th>Working channel inner diameter</th>
<th>Sheath size</th>
</tr>
</thead>
<tbody>
<tr>
<td>11272 VP PAL</td>
<td>with positive deflection</td>
<td>0° 120° 37 cm</td>
<td>6.5 Fr.</td>
<td>16 Fr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11272 VN NTSC</td>
<td>with positive deflection</td>
<td>0° 120° 37 cm</td>
<td>6.5 Fr.</td>
<td>16 Fr.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11272 VNU NTSC</td>
<td>with contrapositive deflection</td>
<td>0° 120° 37 cm</td>
<td>6.5 Fr.</td>
<td>16 Fr.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard white light version

Expanded PDD version

Following accessories are included in delivery:

27677 A Case

27023 FE Grasping Forceps for small fragments, single action jaws, flexible, 5 Fr., length 73 cm

27023 ZE Biopsy Forceps, single action jaws, flexible, 5 Fr., length 73 cm

11025 E Pressure Compensation Cap, for ventilation during gas and plasma sterilization

13242 XL Leakage Tester, with bulb and manometer

27651 B Cleaning Brush, round, flexible, outer diameter 3 mm, for working channel diameter 1.8 – 2.6 mm, length 100 cm

27014 Y LUER-Adaptor, with seal

20213070 Video Connecting Cable

Optional accessories:

27023 KF Stone Basket, nitinol, without tip, straight, 3 Fr., length 70 cm, 4 wires, basket diameter 12 mm, sterile, for single use

27723 T Coagulation Electrode, unipolar, 4 Fr., length 73 cm

27550 N Seal, for Instrument Ports 27001 G/GF/GH/GP, package of 10, single use recommended

27001 RA Cleaning Adaptor
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

MIP L – Percutaneous Nephroscope

Special Features:
- Open system allows a particularly atraumatic therapy under low-pressure conditions
- Bougie with a second eccentric channel for guide wire deflection enables precise steering of the wire
- Large working channel allows the use of rigid standard instruments and large lithotripsy probes up to 11.5 Fr.
- For large stone burdens

Specifications:
- Instrument sheath: 19.5 Fr.
- Working channel: 12.4 Fr. for use with instruments up to 11.5 Fr.
- Telescope: HOPKINS® rod lens telescope, direction of view 12°
- Length: 22 cm
- Eyepiece: angled

Following accessories are included in delivery:

- **27840 GP** Instrument Port with Sealing System and Quick Release Lock, 1 channel for nephroscope for MIP L
- **27500** LUER-Lock Tube Connector, male, tube diameter 9 mm
- **27502** LUER-Lock Tube Connector, with stopcock, dismantling
- **27001 E** Insertion Aid, for guide wires
- **30160 XA** Silicone Leaflet Washer, diameter 3–5.5 mm, type dome valve, package of 10
- **30160 XB** Seal, package of 10
- **39501 XKL** Wire Tray including:
 - **Cleaning Adaptor**, for Instrument Port 27840 GP
Dilators, Sheaths and Applicators
for MIP L

27840 AB

27840 AA **One Step Dilator**, with central channel and a second eccentric channel for guide wires, for use with 23/24 Fr. Operating Sheaths 27840 BA/BAS

27840 AB **Same**, for use with 25/26 Fr. Operating Sheaths 27840 BB/BBS

27840 BA

27840 BA **Operating Sheath**, 23/24 Fr., working length 15 cm, for continuous irrigation and suction

27840 BB **Same**, 25/26 Fr.

27840 BAS **Operating Sheath**, for the supine position, 23/24 Fr., working length 18 cm, for continuous irrigation and suction, for use with Nephroscope 27840 KA, One Step Dilator 27840 AA and Applicator 27840 CFS

27840 BBS **Operating Sheath**, for the supine position, 25/26 Fr., working length 18 cm, for continuous irrigation and suction, for use with Nephroscope 27840 KA, One Step Dilator 27840 AB and Applicator 27840 CFS

27840 CF

27840 CF **Applicator for Sealant**, including sheath and rod, for use with Operating Sheaths 27840 BA/BB

27840 CFS **Applicator for Sealant**, for the supine position, including sheath and rod, for use with Operating Sheaths 27840 BAS/BBS
MIP M – Percutaneous Nephroscope

Special Features:
- Well-proven miniature nephroscope with optimized design
- One-step dilator with a second eccentric channel for guide wire deflection enables precise steering of the wire
- Large working channel allows the use of rigid standard instruments and large lithotripsy probes up to 5 Fr.
- For the treatment of medium stone burdens

Specifications:
- Instrument sheath: 12 Fr.
- Working channel: 6.7 Fr. for use with instruments up to 5 Fr.
- Telescope: Fiber optic system, direction of view 12º
- Length: 22 cm
- Eyepiece: angled

Following accessories are included in delivery:
- 27001 GP Instrument Port with Sealing System and Quick Release Lock, 1 channel
- 27550 N Seal, for Instrument Ports 27001 G/GF/GH/GP, package of 10, single use recommended
- 27500 Luer-Lock Tube Connector, male, tube diameter 9 mm
- 27502 Luer-Lock Tube Connector, with stopcock, dismantling
- 27001 E Insertion Aid, for guide wires
- 39501 XK Wire Tray including: Cleaning Adaptor, for Instrument Ports 27001 G/GF/GH/GG/GP
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

Dilators, Sheaths and Applicators
for MIP M

27830 AB

27830 AA One Step Dilator, with central channel for guide wires, for use with 15/16 Fr. Operating Sheaths 27830 BA/BAS
27830 AB One Step Dilator, with central channel and a second eccentric channel for guide wires, for use with 16.5/17.5 Fr. Operating Sheaths 27830 BB/BBS
27830 AC Same, for use with 21/22 Fr. Operating Sheaths 27830 BC/BCS

27830 BB

27830 BA Operating Sheath, 15/16 Fr., working length 15 cm, for continuous irrigation and suction
27830 BB Same, 16.5/17.5 Fr.
27830 BC Same, 21/22 Fr.
27830 BAS Operating Sheath, for the supine position, 15/16 Fr., working length 18 cm, for continuous irrigation and suction
27830 BBS Same, 16.5/17.5 Fr.
27830 BCS Same, 21/22 Fr.
27830 BK Operating Sheath for Children, 16.5/17.5 Fr., working length 7.5 cm, for continuous irrigation and suction

27830 CF

27830 CF Applicator for Sealant, including sheath and rod, for use with Operating Sheaths 27830 BA/BB/BC
27830 CFS Applicator for Sealant, for the supine position, including sheath and rod, for use with Operating Sheaths 27830 BAS/BBS/BCS

27001 GG

27001 GG Instrument Port with Sealing System and Quick Release Lock, large, 1 channel, for use with accessories up to 6 Fr. (diameter 2 mm) in combination with Miniature Nephroscope for MIP M 27830 KA
MIP XS/S – Percutaneous Nephroscope

Special Features:
- Smaller system for minimal access tract
- Working channel with 2 Fr. for guided laser fibers allows safe use
- Separate irrigation channel for optimal irrigation and good visualization
- For low stone burdens
- Provides an alternative where flexible ureterorenoscopy is not possible

Specifications:
- Instrument sheath: 7.5 Fr.
- Working channel: 2 Fr.
- Separate irrigation channel: 3 Fr.
- Telescope: Fiber optic system, direction of view 6º
- Length: 24 cm
- Eyepiece: angled

Following accessories are included in delivery:

- 27001 G Instrument Port with Sealing System and Quick Release Lock, 1 channel
- 27550 N Seal, for Instrument Ports 27001 G/GF/GH/GP, package of 10, single use recommended
- 27500 Luer-Lock Tube Connector, male, tube diameter 9 mm
- 27502 Luer-Lock Tube Connector, with stopcock, dismantling
- 27001 E Insertion Aid, for guide wires

- 39501 XK Wire Tray including:
 Cleaning Adaptor, for Instrument Ports 27001 G/GF/GH/GG/GP

- 39501 XRV Multiport Bridge

- 39107 ALK Cleaning Adaptor, for use with small Luer stopcocks
Dilators, Sheaths and Applicators
for MIP XS/S

Dilator and Operating Sheaths for MIP XS

27820 AA

27820 AA One Step Dilator, with central channel for guide wires, for use with 8.5/9.5 Fr. Operating Sheaths 27820 BA/BAS

27820 BA

27820 BA Operating Sheath, 8.5/9.5 Fr., working length 15 cm
27820 BAS Operating Sheath, for the supine position, 8.5/9.5 Fr., working length 18 cm

Dilator and Operating Sheaths for MIP S

27820 AB

27820 AB One Step Dilator, with central channel for guide wires, for use with 11/12 Fr. Operating Sheath 27820 BB

27820 BB

27820 BB Operating Sheath, 11/12 Fr., working length 15 cm, for continuous irrigation and suction
27820 BBS Operating Sheath, for the supine position, 11/12 Fr., working length 18 cm, for continuous irrigation and suction
27820 BK Operating Sheath for Children, 11/12 Fr., working length 7.5 cm, for continuous irrigation and suction

Applicators for MIP XS/S

27820 CF

27820 CF Applicator for Sealant, including sheath and rod, for use with Operating Sheaths 27820 BA/BB
27820 CFS Applicator for Sealant, for the supine position, including sheath and rod, for use with Operating Sheaths 27820 BAS/BB
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

Optional Accessories for MIP L

27840 LIK

LASER Hand Instrument, distal tip bent upwards, fixation for LASER fibers and sealing system, working length 35 cm, for use with Nephroscope for MIP L 27840 KA and Instrument Port MIP L 27840 GP as well as LASER fibers up to diameter 1 mm including:

Cleaning Adaptor Seal, package of 10

27290 F **Forceps**, for grasping stone fragments and coagula, with fenestrated jaws and U-spring handle, 11.5 Fr., length 38 cm, color code: red-black

27290 H **Forceps**, for grasping larger stones and stone fragments, with triple serrated jaws and U-spring handle, 10.5 Fr., length 38 cm, color code: red-black

27290 K **Forceps**, for grasping larger stones and stone fragments, with fenestrated jaws and ring handle, double action jaws, 10.5 Fr., length 38 cm, color code: red-black

27290 M **Forceps**, for grasping larger stones and stone fragments, with serrated jaws and ring handle, double action jaws, 10.5 Fr., length 38 cm, color code: red-black

27294 S **Knife**, straight, with 3-ring-handle, 10.5 Fr., length 38 cm, color code: red-black

27294 SK **Knife** only

27294 SH **Knife**, sickle-shaped, with 3-ring handle, 10.5 Fr., length 38 cm, color code: red-black

27294 SB **Knife** only

27840 DS **Sealing Ring**, for Instrument Port 27840 GP, bore 0.7 mm, package of 10, for use with thin lithotripsy probes

Optional accessories for MIP M

27830 FK **Forceps for Foreign Body Removal**, double action jaws, flexible, 5 Fr., length 40 cm

27830 FL **Biopsy Forceps**, double action jaws, flexible, 5 Fr., length 40 cm

27830 S **Scissors**, single action jaws, semiflexible, 5 Fr., working length 40 cm

27830 H **Forceps**, rigid, for grasping large stones and stone fragments, with triple serrated jaw parts and U-spring handle, 5 Fr., length 36 cm
UROMAT E.A.S.I.® SCB
Pressure-regulated Suction and Irrigation System

Special Features:

- **Intuitive:**
 Pump parameters can be selected via touch screen

- **Market-oriented:**
 BOLUS function with adjustable parameters which can be activated via footswitch or touch screen

- **Easier identification:**
 Color coding of the tubing set
 Blue: Irrigation
 Red: Suction

- **Can be used for all indications in urology**

- **Innovative:**
 Intelligent, pressure-regulated double roller pump (ensures a constant balance between inflow and outflow for highest patient safety)

- **Powerful:**
 Optimal power values for several endourological applications

- **Cost-efficient:**
 Continuous comparison of pressure and flow values enables optimal fluid use

- **Convenient:**
 Preset parameters for endo-urological applications

![UP410 S1](image)

UP410 S1

UROMAT E.A.S.I.® SCB, power supply 100 – 240 VAC, 50/60 Hz, UROMAT E.A.S.I.® SCB ready, compatible from RUI Release 45

- **SCB Connecting Cable**, length 100 cm
- **Basic Tubing Set**, for single use
- **Control Cable**

Accessories:

- **031717-10** *Single-use IRRIGATION tubing set*, with two puncture needles. For use with KARL STORZ HYSTEROMAT E.A.S.I.® and UROMAT E.A.S.I., sterile, 10 per pack
 [STERILE]

- **031217-10** *Single-use SUCTION tubing set*. For use with KARL STORZ HYSTEROMAT E.A.S.I.® and UROMAT E.A.S.I., sterile, 10 per pack
 [STERILE]

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow-regulated</td>
<td>depending on mode</td>
</tr>
<tr>
<td>Irrigation pressure</td>
<td>adjustable 20-200 mmHg</td>
</tr>
<tr>
<td>Suction</td>
<td>100-1800 ml/min suction power</td>
</tr>
<tr>
<td>Power supply</td>
<td>100-240 VAC, 50/60 Hz</td>
</tr>
<tr>
<td>Dimensions</td>
<td>447 x 155 x 313 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>8.8 kg</td>
</tr>
<tr>
<td>Certified to</td>
<td>IEC 60601-1, CE acc. to MDD</td>
</tr>
</tbody>
</table>

*
UROMAT E.A.S.I.® SCB
System Components for MIP XS

- Irrigation Tubing Set
 - 031717-10*
- Nephroscope for MIP XS/S
 - 27820 KA
- Operating Sheath, 8.5/9.5 Fr., use of UROMAT E.A.S.I.® SCB mandatory
 - 27820 BA
- Suction Tubing Set
 - 031217-10*
CALCULASE II
Holmium LASER System for Endoscopic Stone Therapy and Soft Tissue Treatment, Recommended Standard Set Configuration

20 Watt LASER Power
The brand CALCULASE II stands for a cost-effective and efficient Ho:YAG laser system for endoscopic fiber-guided laser lithotripsy. Furthermore, the system can be used for various soft-tissue treatments in the urinary tract including strictures in the ureteropelvic junction (UPJ) and the ablation of transitional cell carcinomas.

Multiple Laser Fibers and Instruments
KARL STORZ offers laser fibers in different sizes (230, 365 and 600 μm) for single and multiple use.
Together with our broad range of rigid and flexible ureterorenoscopes with fiberoptics and sensor technology, KARL STORZ provides the ideal and complete solution for stone therapy and soft tissue treatment.

Automatic Fiber Detection
CALCULASE II automatically assures the correct settings of maximal energy and therefore avoids any damage to fibers and devices.

Mobility
Due to its compact design, CALCULASE II is a highly versatile and portable system.
With its newly designed handles, the laser unit can be placed in the equipment cart and then rolled easily.
CALCULASE II
Holmium LASER System for Endoscopic Stone Therapy and Soft Tissue Treatment,
Recommended Standard Set Configuration

27 750220-1

27 750201U1 CALCULASE II, Holmium LASER system with KARL STORZ-SCB, power supply 115/230 VAC, 50/60 Hz including:
Mains Cord
One-Pedal Footswitch
Key Set
Remote Interlock Connector
Safety Goggles Ho:YAG Laser, 2080 nm
Ion Exchanger

Please note:
Each lithotripsy system requires a LASER fiber basic set:
27 750 87 or 27 7502 86

<table>
<thead>
<tr>
<th>Energy (J)</th>
<th>Frequency (Hz)</th>
<th>4 Hz</th>
<th>6 Hz</th>
<th>8 Hz</th>
<th>10 Hz</th>
<th>15 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 J</td>
<td>2.0 W</td>
<td>3.0 W</td>
<td>4.0 W</td>
<td>5.0 W</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>0.8 J</td>
<td>3.2 W</td>
<td>4.8 W</td>
<td>6.4 W</td>
<td>8.0 W</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.2 J</td>
<td>4.8 W</td>
<td>7.2 W</td>
<td>9.6 W</td>
<td>12.0 W</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>1.7 J</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2.0 J</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Parameter matrix for 365 μm and 600 μm fibers

<table>
<thead>
<tr>
<th>Energy (J)</th>
<th>Frequency (Hz)</th>
<th>4 Hz</th>
<th>6 Hz</th>
<th>8 Hz</th>
<th>10 Hz</th>
<th>15 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 J</td>
<td>2.0 W</td>
<td>3.0 W</td>
<td>4.0 W</td>
<td>5.0 W</td>
<td>7.5 W</td>
<td></td>
</tr>
<tr>
<td>0.8 J</td>
<td>3.2 W</td>
<td>4.8 W</td>
<td>6.4 W</td>
<td>8.0 W</td>
<td>12.0 W</td>
<td></td>
</tr>
<tr>
<td>1.2 J</td>
<td>4.8 W</td>
<td>7.2 W</td>
<td>9.6 W</td>
<td>12.0 W</td>
<td>18.0 W</td>
<td></td>
</tr>
<tr>
<td>1.7 J</td>
<td>6.8 W</td>
<td>10.2 W</td>
<td>13.6 W</td>
<td>17.0 W</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>2.0 J</td>
<td>8.0 W</td>
<td>12.0 W</td>
<td>16.0 W</td>
<td>20.0 W</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

Parameters are selected via cable coding.
Accessories for CALCULASE II

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27750271-P6</td>
<td>CALCULASE II Fiber 230 μm, reusable, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750272-P6</td>
<td>CALCULASE II Fiber 365 μm, reusable, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750273-P6</td>
<td>CALCULASE II Fiber 600 μm, reusable, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750287</td>
<td>CALCULASE II Fiber Kit, including:</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 230 μm, reusable, sterile</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 365 μm, reusable, sterile</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 600 μm, reusable, sterile</td>
</tr>
</tbody>
</table>

Fiber Sets, for single use

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27750277-P6</td>
<td>CALCULASE II Fiber 230 μm, for single use, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750278-P6</td>
<td>CALCULASE II Fiber 365 μm, for single use, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750279-P6</td>
<td>CALCULASE II Fiber 600 μm, for single use, sterile, length 300 cm, package of 6</td>
</tr>
<tr>
<td>27750286</td>
<td>CALCULASE II Fiber Kit, including:</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 230 μm, for single use, sterile</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 365 μm, for single use, sterile</td>
</tr>
<tr>
<td></td>
<td>3x CALCULASE II Fiber 600 μm, for single use, sterile</td>
</tr>
</tbody>
</table>

Optional accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>27750280</td>
<td>Fiber Stripper Set, sterilizable, for use with CALCULASE II fibers</td>
</tr>
<tr>
<td></td>
<td>including:</td>
</tr>
<tr>
<td></td>
<td>Silicone Pad</td>
</tr>
<tr>
<td></td>
<td>Ceramic Knife</td>
</tr>
<tr>
<td></td>
<td>Fiber Strippers 230, 365 and 600</td>
</tr>
<tr>
<td>27750095</td>
<td>Safety Goggles Ho:YAG LASER, suitable for 2080 nm, for both spectacle and non-spectacle wearers, absorbing plastic filter, flexible earpieces, lightweight, for use with CALCULASE II 27750220-1 and CALCULASE 27750120-1</td>
</tr>
</tbody>
</table>
CALCULASE II Equipment Cart

Special Features:
- Flexible use of CALCULASE II in various ORs
- Spacious storage room for accessories and expendable materials in two lockable drawers (LASER safety goggles or LASER fibers)
- Integrated cable winding and footswitch holder maintain an uncluttered OR
- Easy to transport due to large, smooth-running and antistatic dual wheels
- Powder-coated panels and shelves meet the most stringent quality and hygiene standards

Equipment cart,
wide, low, rides on 4 antistatic dual wheels equipped with locking brakes, mains switch on cover, double rear panel with integrated electrical subdistributors with 6 sockets, potential earth connectors,
Dimensions in mm (w x h x d):
Equipment cart: 830 x 1265 x 730,
shelf: 630 x 25 x 510,
caster diameter: 150 mm,
including:
Base module, equipment cart, wide
Cover, equipment cart, wide
Beam package, equipment cart, low
Shelf, wide
2x **Drawer unit with lock,** wide
2x **Equipment rail,** long

UG 210
CALCUSPLIT®
System for Pneumatic Lithotripsy,
Recommended Standard Set Configuration

27 6300 03 CALCUSPLIT®, power supply 100/120/230/240 VAC, 50/60 Hz
including:
Mains Cord
One-Pedal Footswitch, digital, two-stage
Fabric Tube, for connection to the central compressed air supply, length 400 cm
CALCUSPLIT® Handpiece, autoclavable
Sealing Rings, for use with CALCUSPLIT® handpiece, package of 5
Spare Damping Unit, autoclavable, for use with CALCUSPLIT® lithotripsy probes, package of 20
Silicone Tube, autoclavable, for connecting handpieces, length 200 cm
Cleaning Brush, outer diameter 2.5 mm, length 35 cm
Instrument Oil, bottle of 50 ml

Optional Accessories:
20 0310 01 Air Compressor, 0 – 8 bar, power supply 230 VAC, 50/60 Hz,
dimensions (w x d x h): approx. 500 x 320 x 340 mm, weight approx. 22 kg
including:
Fabric Tube, for connecting CALCUSPLIT® SCB 27 6300 20 and HYDROMAT® 26 3110 20 to Air Compressor 20 0310 20

20 0310 01 C Same, power supply 115 VAC, 50/60 Hz

Specifications:

<table>
<thead>
<tr>
<th>Working frequency</th>
<th>- single shot</th>
<th>- continuous shot 12 Hz</th>
<th>Dimensions w x h x d</th>
<th>305 x 164 x 260 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>110/120/230/240 VAC, 50/60 Hz</td>
<td></td>
<td>Weight</td>
<td>5 kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Certified to</td>
<td>IEC 60601-1, CE acc. to MDD</td>
</tr>
</tbody>
</table>
Accessories for CALCUSPLIT®

Lithotripsy Wire Probes for use with Handpiece 27630038

CALCUSPLIT® Lithotripsy Wire Probes

<table>
<thead>
<tr>
<th>Order No.</th>
<th>Diameter</th>
<th>Working L.</th>
<th>for use with</th>
</tr>
</thead>
<tbody>
<tr>
<td>27632534</td>
<td>0.8 mm</td>
<td>48.5 cm</td>
<td>Ureteroscopes 27000 K, 27001 K, 27002 K, 27002 KP, in conjunction with Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
<tr>
<td>27632535</td>
<td>1.0 mm</td>
<td>48.5 cm</td>
<td>Ureteroscope 27002 K, in conjunction with 48.5 cm Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
<tr>
<td>27632536</td>
<td>1.6 mm</td>
<td>48.5 cm</td>
<td>Ureteroscope 27002 K, in conjunction with 48.5 cm Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
<tr>
<td>27632634</td>
<td>0.8 mm</td>
<td>57.5 cm</td>
<td>Uretero-Renoscopes 27000 L, 27001 L, 27002 L, 27003 L, in conjunction with Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
<tr>
<td>27632635</td>
<td>1.0 mm</td>
<td>57.5 cm</td>
<td>Uretero-Renoscope 27002 L, in conjunction with Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
<tr>
<td>27632636</td>
<td>1.6 mm</td>
<td>57.5 cm</td>
<td>Uretero-Renoscope 27002 L, in conjunction with Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
</tbody>
</table>

Adaptor, autoclavable, for KARL STORZ uretero-renoscopes, new generation

<table>
<thead>
<tr>
<th>Order No.</th>
<th>Diameter</th>
<th>Working L.</th>
<th>for use with</th>
</tr>
</thead>
<tbody>
<tr>
<td>27630136</td>
<td>–</td>
<td>–</td>
<td>Uretero-Renoscope, new generation, for use with CALCUSPLIT® in conjunction with Instrument Port 27001 G and Handpiece 27630038</td>
</tr>
</tbody>
</table>
With the IMAGE1 S™ camera platform, KARL STORZ once again sets a new milestone in endoscopic imaging, consolidating their reputation as an innovative leader in minimally invasive surgery. The IMAGE1 S™ camera platform offers surgeons a single system for all applications. As a modular camera platform, IMAGE1 S™ combines various technologies (e.g., rigid, flexible and 3D endoscopy) in one system and can therefore be adapted to individual customer needs. Furthermore, near infrared (NIR/ICG) for fluorescence imaging, the integration of operating microscopes and the use of VITOM® 3D exoscopes is possible via the camera platform.

Brilliant imaging

- Versatile visualization options for diagnosis and therapy
- Innovative S-Technologies for easy differentiation of tissue structures
- Clear and razor-sharp imaging
- Natural color rendition
- Automatic light source control

SPECTRA A: Not for sale in the U.S.

SPECTRA B: Not for sale in the U.S.
IMAGE1 S™
As individual as your requirements

Innovative Design

- Side-by-side View: Parallel display of standard image and visualization mode possible
- Multiple source management: Simultaneous control, display and documentation of two image sources possible (e.g., hybrid procedures)
- Intuitive user guidance (dashboard, live menu and setup menu)
- Intelligent icons display settings and status
- Individual presets possible
- 50 patient data records can be archived

Economical and futureproof

- Modular platform: Rigid, flexible and 3D technology can be selected according to individual preferences
- Easy integration of new technologies
- Forward and backward compatibility
- No additional equipment (e.g., special light sources) required for S-Technologies

* SPECTRA A: Not for sale in the U.S.
* SPECTRA B: Not for sale in the U.S.
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

IMAGE1 S™ Camera System

TC 200EN* IMAGE1 S CONNECT™, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

Mains Cord, length 300 cm
DVI-D Connecting Cable, length 300 cm
SCB Connecting Cable, length 100 cm
USB Flash Drive, 32 GB, USB silicone keyboard, with touchpad, US

* Available in the following languages: DE, ES, FR, IT, PT, RU

Specifications:

<table>
<thead>
<tr>
<th>HD video outputs</th>
<th>Format signal outputs</th>
<th>LINK video inputs</th>
<th>USB interface</th>
<th>SCB interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 2x DVI-D</td>
<td></td>
<td>3x</td>
<td>4x USB, (2x front, 2x rear)</td>
<td>2x 6-pin mini-DIN</td>
</tr>
<tr>
<td>- 1x 3G-SDI</td>
<td>1920 x 1080p, 50/60 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Power supply 100–120 VAC/200–240 VAC
Power frequency 50/60 Hz
Protection class I, CF-Defib
Dimensions w x h x d 305 x 54 x 320 mm
Weight 2.1 kg

For use with IMAGE1 S™

TC 200EN

TC 301 IMAGE1 S™ X-LINK, link module, for use with flexible video endoscopes, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with IMAGE1 S CONNECT™ TC 200EN including:

Mains Cord, length 300 cm
Link Cable, length 20 cm

Specifications:

<table>
<thead>
<tr>
<th>Camera System</th>
<th>TC 301 (X-LINK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported camera heads/video endoscopes</td>
<td>11900 AP/AN, 11900 BP/BN, 11101 VP/VN, 13820 PKS/NKS, 13821 PKS/NKS, 13885 PKS/NKS, 13924 PKS/NKS, 13925 PKS/NKS, 11272 VPI/VNI, 11272 VPU/VNU, 11272 VPU/VNU, 11272 VPU/VNU, 11272 VPU/VNU, 11278 V, 11278 VU (IMAGE1 S™ modes available)</td>
</tr>
</tbody>
</table>

LINK video outputs 1x
Power supply 100–120 VAC/200–240 VAC
Power frequency 50/60 Hz
Protection class I, CF-Defib
Dimensions w x h x d 305 x 54 x 320 mm
Weight 1.86 kg
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

IMAGE1 S™ Camera Heads

For use with IMAGE1 S™ Camera System
IMAGE1 S CONNECT™ Module TC 200EN, IMAGE1 S™ X-LINK Module TC 301

TH 110
IMAGE1 S™ HX One-Chip FULL HD Camera Head,
50/60 Hz, fixed focus, progressive scan, soakable,
gas- and plasma-sterilizable, focal length $f = 16$ mm,
2 freely programmable camera head buttons,
for use with IMAGE1 S™

TH 111
IMAGE1 S™ HX-P One-Chip FULL HD Pendulum Camera Head,
50/60 Hz, with pendulum system and fixed focus,
progressive scan, soakable, gas- and plasma-sterilizable,
focal length $f = 16$ mm, 2 freely programmable camera head buttons,
for use with IMAGE1 S™

TH 112
IMAGE1 S™ HX FI One-Chip FULL HD Camera Head,
S-Technologies (CHROMA, SPECTRA A and B) available,
OPAL1-Technologies (PDD, AF) in conjunction with light source
D-LIGHT C for PDD or D-Light C/AF for PDD and AF, fixed focus,
progressive scan, soakable, gas- and plasma-sterilizable,
focal length $f = 16$ mm, 2 freely programmable camera head buttons,
for use with IMAGE1 S™ (X-LINK)

TH 113
IMAGE1 S™ HX FI One-Chip FULL HD Camera Head,
S-Technologies (CHROMA, SPECTRA A and B) available,
OPAL1-Technologies (PDD, AF) in conjunction with light source
D-LIGHT C for PDD or D-Light C/AF for PDD and AF, fixed focus,
progressive scan, soakable, gas- and plasma-sterilizable,
focal length $f = 16$ mm, 2 freely programmable camera head buttons,
for use with IMAGE1 S™ (X-LINK)
Monitors

9826 NB
26" FULL HD Monitor,
wall-mounted with VESA 100 adaption,
color systems PAL/NTSC,
max. screen resolution 1920 x 1080,
image format 16:9,
power supply 100 – 240 VAC, 50/60 Hz
including:
External 24 VDC Power Supply
Mains Cord

9619 NB
19" HD Monitor,
color systems PAL/NTSC, max. screen
resolution 1280 x 1024, image format 4:3,
power supply 100–240 VAC, 50/60 Hz,
wall-mounted with VESA 100 adaption,
including:
External 24 VDC Power Supply
Mains Cord

Cold Light Fountain Power LED 175 SCB

20161401-1
Cold Light Fountain Power LED 175 SCB,
with integrated SCB, high-performance LED
and one KARL STORZ light outlet,
power supply 110–240 VAC, 50/60 Hz
including:
Mains Cord
SCB Connecting Cable, length 100 cm
20132026
Xenon-Spare-Lamp, 175 watt, 15 volt
Fiber Optic Light Cables
for Cold Light Fountains

495 NA Fiber Optic Light Cable, with straight connector, diameter 3.5 mm, length 230 cm

495 NAC Fiber Optic Light Cable, with straight connector, extremely heat-resistant, with safety lock, enhanced light transmission, can be used for ICG applications, diameter 3.5 mm, length 230 cm

495 NL Fiber Optic Light Cable, with straight connector, diameter 3.5 mm, length 180 cm

495 NTA Fiber Optic Light Cable, with straight connector, diameter 2.5 mm, length 230 cm

495 NT Fiber Optic Light Cable, with straight connector, diameter 2.5 mm, length 180 cm

Recommended combination*

<table>
<thead>
<tr>
<th>Light Cable Diameter</th>
<th>Endoscope Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8 – 5.0 mm</td>
<td>6.6 – 12.0 mm</td>
</tr>
<tr>
<td>3.0 – 3.5 mm</td>
<td>3.0 – 6.5 mm</td>
</tr>
<tr>
<td>2.0 – 2.5 mm</td>
<td>0.8 – 2.9 mm</td>
</tr>
</tbody>
</table>

* Special endoscope may deviate
Minimally Invasive Percutaneous Nephrolitholapaxy (MIP)

Equipment Cart

UG 220

Equipment Cart, wide, high, rides on 4 antistatic dual wheels equipped with locking brakes, mains switch on cover, energy beam with integrated electrical subdistributors with 12 sockets, grounding plugs,

Dimensions:
- Equipment cart: 830 x 1474 x 730 mm (w x h x d),
- Shelf: 630 x 25 x 510 mm (w x h x d),
- Caster diameter: 150 mm

including:
- **Base Module**, equipment cart, wide
- **Cover**, equipment cart, wide
- **Beam Package**, equipment cart, high
- 3x **Shelf**, wide
- **Drawer Unit with Lock**, wide
- 2x **Equipment Rail**, long
- **Camera Holder**

UG 530

Swivel Arm, for navigation camera, height and side adjustable, can be mounted on the left or on the right side, swivel range 180°, reach 880 mm, from center 1270 mm, loading capacity max. 1.5 kg, for use with Equipment Carts UGxxx and navigation camera

UG 540

Monitor Swivel Arm, height and side adjustable, can be positioned on the left or on the right side, swivel range 180°, reach 780 mm, from center 1170 mm, loading capacity max. 15 kg, with monitor mount VESA 75/100, for use with Equipment Carts UGxxx