Important notes:

Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any third party publication(s) or links to any third party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this work are responsible for the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the third party publication(s) or third party websites and no guarantee is given for any other work or any other websites at all.

Basic and Advanced Endoscopic Sinus Surgery Techniques – A Laboratory Dissection Manual

Dharambir S. Sethi, FRCS (Ed) FAMS (ORL)
Department of Otorhinolaryngology
Singapore General Hospital
Republic of Singapore

Correspondence address of the author:
Dharambir S. Sethi, FRCS (Ed) FAMS (ORL)
Singapore General Hospital
Department of Otorhinolaryngology
Office: Block 6 Level 6
Outram Road
Singapore 169608, Republic of Singapore
Phone: +65 6321 4790
Fax: +65 6226 2079
E-mail: goldss2002@yahoo.com

All rights reserved.
1st Edition 2006
© 2015 EndoPress GmbH
P.O. Box, 78503 Tuttingen, Germany
Phone: +49 (0) 74 61/1 45 90
Fax: +49 (0) 74 61/708-529
E-mail: endopress@t-online.de

No part of this publication may be translated, reprinted or reproduced, transmitted in any form or by any means, electronic or mechanical, now known or hereafter invented, including photocopying and recording, or utilized in any information storage or retrieval system without the prior written permission of the copyright holder.

Editions in languages other than English and German are in preparation. For up-to-date information, please contact EndoPress GmbH at the address shown above.

Design and Composing:
EndoPress GmbH, Germany

Printing and Binding:
Straub Druck + Medien AG
Max-Planck-Straße 17, 78713 Schramberg, Germany

## Table of Contents

**Introduction** ............................................................................................................................................... 6

**Pictorial Overview of the Lateral Wall and Endoscopic Dissection of the Nose and Paranasal Sinuses** .................................................................................................................................................. 6

**Anatomy of the Lateral Nasal Wall** ............................................................................................................. 6

**Dissection of the Lateral Nasal Wall** .............................................................................................................

1. Complete Removal of the Nasal Septum .......................................................................................... 13
2. Medial and Superior Reflection of the Middle Turbinate ................................................................. 13
3. Removal of the Middle Turbinate ......................................................................................................... 13
4. Uncinectomy ........................................................................................................................................... 13
5. Middle Meatal Antrostomy .................................................................................................................... 14
6. Dissection of the Frontal Recess ............................................................................................................ 14
7. Dissection of the Anterior Ethmoid ..................................................................................................... 14
8. Dissection of the Posterior Ethmoid ................................................................................................... 14
9. Skull Base ................................................................................................................................................ 14
10. Sphenoid Sinus .......................................................................................................................................... 15
11. Nasolacrimal Drainage System ............................................................................................................ 15

**Endoscopic Sinus Dissection** ......................................................................................................................

1. Nasal Endoscopy .......................................................................................................................................... 16
2. Infundibulotomy ......................................................................................................................................... 17
3. Middle Meatal Antrostomy ...................................................................................................................... 18
4. Dissection of the Anterior Ethmoid ........................................................................................................ 20
5. Dissection of the Posterior Ethmoid ...................................................................................................... 21
6. Dissection of the Sphenoid Sinus ............................................................................................................ 22
7. Dissection of the Frontal Recess ............................................................................................................. 24

**Advanced Endoscopic Surgical Techniques**

1. Endoscopic Dacrocystorhinostomy ........................................................................................................ 25
2. Orbital Decompression ........................................................................................................................... 25
3. Orbital Apex Decompression .................................................................................................................. 25
4. Optic Nerve Decompression ................................................................................................................... 26
5. Exposure of the Sella Turcica ................................................................................................................ 26
6. Repair of CSF Fistula ............................................................................................................................... 26

**Instrument Set for Basic and Advanced Endoscopic Sinus Surgery Techniques**

*as recommended by Dr. D. S. SETHI, FRCS (Ed) FAMS (ORL) .................................................................... 28
Introduction

Since the introduction of endoscopic sinus surgery in the mid-1980s, there has been global interest in this technique. Although the method has been widely accepted, it has nevertheless been characterized as often being technically difficult, with a steep learning and often fraught with potentially serious complications in the hands of the inexperienced.

One of the keys to learning endoscopic sinus surgery is to acquire a sound knowledge of the anatomy of the nose and the paranasal sinuses. Hundreds of courses and workshops have been offered on the subject all over the world. Owing to the regulations governing the use of human tissue in different countries, however, cadaver dissection is not offered as part of all workshops. Because it is of paramount importance to perform some cadaver dissection before embarking on this type of training, surgeons are encouraged to attend workshops offering cadaver dissections.

This dissection manual has been written with the objectives of describing the gross and endoscopic sinus anatomy, and to act as a step-by-step guide for those who are learning endoscopic sinus surgery. The manual describes sequential steps in performing sinus dissection and offers tips on instrument handling techniques that will help surgeons avoid complications.

In the past two decades, various advanced endoscopic sinus procedures have evolved. This manual also describes the surgical anatomy and the dissection steps pertaining to the orbit, skull base, optic nerve, pituitary, parasellar region and the cavernous sinus.

Before performing an endoscopic dissection, it is vitally important to develop an understanding of the gross anatomy of the lateral nasal wall. In the past several years, we have introduced dissection of the lateral wall as part of our sinus surgery courses to offer participants an opportunity to dissect the lateral nasal wall and understand its relevance to endoscopic sinus surgery.

The dissection is best performed on a fresh human cadaver head. For our dissection courses, the cadaver heads are deep-frozen and subsequently thawed a few hours before the dissection. The head is cut sagittally with an electric saw through the nasal septum to provide two hemi-heads for lateral wall dissection. Once the gross lateral wall anatomy is understood, delegates proceed to performing endoscopic dissection of the sinuses.

This manual provides a pictorial overview of the gross anatomy of the lateral nasal wall and a step-by-step guide to endoscopic dissection of the nasal cavity and paranasal sinuses.

Pictorial Overview of the Lateral Wall and Endoscopic Dissection of the Nose and Paranasal Sinuses

Anatomy of the Lateral Nasal Wall

The lateral nasal wall consists of the following bones: the frontal process of the maxilla, lacrimal bone, ethmoid bone and vertical plate of the palatine.

Three prominent projections are seen on the lateral nasal wall. These are termed the inferior, middle and superior turbinates (Fig. 1). The inferior turbinate is an independent bone, whereas the middle and superior turbinates are part of the ethmoid complex. Occasionally, a fourth turbinate, called the supreme nasal turbinate, is present. The lateral recesses formed under these turbinates are called the meati, and are known as the inferior, middle and superior meatus (Fig. 3).

A prominence may be seen on the lateral wall, anterosuperior to the origin of the middle turbinate. This is the agger nasi (Latin for “nasal mound”) (Fig. 1). It is pneumatized in 98% of specimens to form the agger nasi cell. This agger nasi cell is the most anterior and consistent of the ethmoid cells. It is bounded laterally by the lacrimal bone, anteriorly by the frontal process of the maxilla, medially by the uncinate process and posteriorly related to the ethmoid infundibulum. Superiorly, it forms the anterior boundary of the frontal recess.
Another prominence is noted on the lateral wall, inferior to the agger nasi cell and anterior to the uncinate process. It is formed by the nasolacrimal duct (Fig. 1) as it courses from the lacrimal sac to its opening in the inferior meatus. The nasolacrimal duct is about 12 mm in length, and its opening (Figs. 16, 19) in the inferior meatus approximately 15 mm from the floor of the nose. As it descends, it curves slightly posteriorly.

An understanding of the attachment of the middle turbinate (Fig. 4) is essential to preserving its stability. The middle turbinate is approximately 4 cm in length in its anteroposterior dimension. The height is variable, about 14.5 mm, 12.5 mm and 7 mm in the anterior, middle and posterior segments, respectively. The attachment of the middle turbinate is divided into three parts.

The anterior third of the middle turbinate (Fig. 4) is attached sagittally to the skull base and lateral to the cribriform plate. As the attachment continues posteriorly, it turns laterally to attach to the lamina papyracea, forming a coronally oriented plate called the basal lamella (Figs. 2, 4, 8, 10). The posterior third of the middle turbinate attachment is almost horizontal and attached along the lamina papyracea as far as the perpendicular plate of the palatine bone. The multiple orientation of the basal lamella accounts for its stability, which can be compromised by excessive resection.

The basal lamella of the middle turbinate is the demarcation between anterior and posteriorly draining groups of sinuses.

The anterior drainage system is anterior to the ground lamella and drains the frontal, maxillary and anterior ethmoids.

Medial and superior retraction of the middle turbinate reveals the structures forming the anterior drainage system.

The uncinate process (Figs. 2, 3) is a thin, almost sagittally oriented, boomerang-shaped bony leaflet that forms part of the lateral nasal wall between the middle and the inferior turbinates from an anterosuperior to posteroinferior position. It is attached anteriorly to the posterior edge of the lacrimal bone and inferiorly (by several bony pedicles) to the superior edge of the inferior turbinate. It has a free posterosuperior border. Superiorly, it may be attached to the lamina papyracea, roof of the ethmoid sinus or middle turbinate. The uncinate process may present many anatomical variations, including a medially and laterally bent uncinate process. The uncinate process represents the first basal lamella (together with the agger nasi).

The bulla ethmoidalis (Fig. 2) is the most prominent of the anterior ethmoid air cells and is readily identified posterior to the uncinate process. The term bulla indicates that this part of the bone is pneumatized. Where the bulla is not pneumatized, it is referred to as the lateral torus.
The ethmoid bulla is about 18 (9–23) mm long and 5.4 (2–13) mm high. It may be variable in size and is pneumatized in 60 to 70% of cases. The bulla often may be highly pneumatized, extending to the skull base superiorly and to the ground lamella posteriorly. Its anterior wall forms the posterior limit of the ethmoid infundibulum, and its posterior wall is the anterior wall of the retrobullar recess (Fig. 8). The lateral wall of the ethmoid bulla is formed by the lamina papyracea (Figs. 4, 7, 9, 10). Superiorly, the anterior and posterior walls merge as the bulla lamella, and may attach to the skull base immediately anterior to the anterior ethmoid artery, which forms the posterior limit of the frontal recess. Inferiorly and posteriorly, it may fuse with the basal lamella, in which case the retrobullar recess may be obliterated or absent.

The two-dimensional cleft between the posterior free border of the uncinate and the anterior wall of the bulla ethmoidalis is termed the hiatus semilunaris inferioris (Fig. 2). A variable cleft called the hiatus semilunaris superioris (Fig. 8) may be identified between the posterior aspect of the bulla ethmoidalis and the basal lamella.

The hiatus semilunaris inferioris is located from 1–10 mm (43% of cases) to 11–20 mm (47% of cases) behind the anterior attachment of the middle turbinate. The length of the semilunar hiatus is between 14 and 22 mm and its medial-lateral extent 0.5 to 3 mm. The hiatus semilunaris inferioris opens laterally into a three-dimensional space, the ethmoid infundibulum (Fig. 6), bounded medially by the uncinate process, posteriorly by the anterior wall of bulla ethmoidalis and laterally by the lamina papyracea.

The ethmoid infundibulum is better examined following removal of the uncinate process (Fig. 7). The infundibulum may continue anteriorly and superiorly into the frontal recess in about 14% of cases. More commonly, in about 86% of cases, the infundibulum ends in a superior blind recess formed by the superior attachment of the uncinate process laterally to the lamina papyracea. This recess is termed the recessus terminalis (Fig. 6). In this situation, the frontal sinus will drain medial to the uncinate process and independent of the ethmoid infundibulum.

The following structures open into the ethmoid infundibulum: the anterior ethmoid cells that include the agger nasi cell and any frontal cells, the maxillary sinus and the frontal sinus if the uncinate attaches medially. The infundibulum was first identified by BOYER in 1805; therefore, in French-speaking countries, the cells opening in this area are known as Boyer’s cells.

A small variable space may exist superior and posterior to the bulla ethmoidalis. This three-dimensional space separates the bulla ethmoidalis from the skull base and basal lamella, and is referred to as the retrobullar recess (Fig. 8). It opens medially through the hiatus semilunaris superioris.

The maxillary sinus ostium (Fig. 5) is normally hidden from view by an intact uncinate process. It is located at the junction of the anterosuperior and posteroinferior aspects of the infundibulum and may be visualized following removal of the uncinate process.
The maxillary sinus ostium is elliptically shaped and approximately 7 to 11 mm long and between 2 and 6 mm wide. It may be as deep as 18–20 mm and forms a short canal running inferiorly and laterally into the maxillary sinus. The ostium is in a slanted plane that is oriented almost 90 degrees to the hiatus semilunaris.

The anterior and posterior fontanelles (Fig. 2) are membranous areas in the lateral nasal wall, formed by a doubled layer of mucosa filling in the gaps of the bony lateral nasal wall. The small anterior fontanelle is anterosuperior to the hiatus semilunaris. The larger posterior fontanelle is posteroinferior to the hiatus semilunaris. It forms the medial wall of the antrum between the natural ostium and the vertical plate of the palatine bone. Often an accessory ostium (Fig. 2) is seen in this area (10–50% of cases).

The posterior ethmoid cells are posterior to the basal lamella. The posterior ethmoid cells drain under the superior turbinate into the superior meatus. The size of the posterior cells depends on the degree of encroachment by the anterior ethmoid cells and posteriorly by the sphenoid. They are generally larger and fewer, varying from 1 to 5 in number.

A posterior ethmoid cell may pneumatize posterolaterally and posterosuperiorly in relation to the anterior wall of the sphenoid. This is a sphenoethmoid cell, also known as an Onodi cell. In this situation, the sphenoid sinus will be located inferior and medial to this cell, but NOT posterior to it.

Fig. 6
A probe has been passed into the ethmoid infundibulum to feel the superior attachment of the uncinate process. In this case, the ethmoid infundibulum ends superiorly in a blind recess called the recessus terminalis, indicating the superior attachment of the uncinate process onto the lamina papyracea.

Fig. 7
The uncinate process has been removed, opening the ethmoid infundibulum. Note the lateral wall of the ethmoid infundibulum formed by the lamina papyracea (LP). The frontal recess is indicated by the asterisk (*). Note that the ethmoid bulla lamella inserts superiorly on the skull base (+). This forms the posterior limit of the frontal recess.

Fig. 8
The bulla ethmoidalis has been removed while retaining the posterior wall. A probe has been passed through an opening in the posterior wall of the bulla, which drains the ethmoid bulla into the retrobullar recess. Note the cleft (*) between the posterior wall of the ethmoid bulla (A) and the basal lamella (B). This two-dimensional cleft is termed the hiatus semilunaris superioris. It leads into a three-dimensional space called the retrobullar recess.
The lateral wall of the ethmoid complex is formed by the lamina papyracea (Figs. 4, 7, 9, 10), which is literally paper-thin, so the orbital fat imparts a yellowish color to it. The medial rectus muscle may occasionally be located in close contact with the lamina. The lamina thickens toward the orbital apex to form the optic tubercle protecting the optic nerve, which becomes medial and runs in close proximity to the medial orbital wall in this location.

The ethmoid complex on either side of the cribiform plate is roofed over by the fovea ethmoidalis of the frontal bone. Its average thickness is 5 mm and it slants posteriorly at 15 degree angle, forming the anterior two thirds of the ethmoid roof. Medially, it joins the lateral lamella of the lamina cribrosa, forming a very fragile junction that is very thin, about one-tenth the thickness of the lateral skull base. The vertical height between the cribiform fossa and the fovea ethmoidalis may vary up to 17 mm and may be asymmetric. The medial slope of the roof may also be variable. The thin lateral lamella is at risk of being penetrated during ethmoid dissection.

The size of the sphenoid sinus (Figs. 1, 13, 15) may vary, depending upon the degree of pneumatization.

There are three commonly described patterns:

<table>
<thead>
<tr>
<th>Type</th>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sellar type</td>
<td>76%</td>
<td>Pneumatization beyond the anterior sellar wall</td>
</tr>
<tr>
<td>Pre-sellar type</td>
<td>21%</td>
<td>Pneumatization to the sellar wall (Fig. 12)</td>
</tr>
<tr>
<td>Conchal type</td>
<td>3%</td>
<td>Poorly pneumatized</td>
</tr>
</tbody>
</table>

The sphenoid sinus ostium (Fig. 12) is located high in the sphenoethmoidal recess on the anterior sphenoid wall and is just medial to the superior turbinate.

The anterior sphenoid wall (Figs. 4, 13) has a variable degree of obliquity running in an anteromedial to posterosuperior direction. In the presence of a sphenoethmoidal (Onodi) cell, the anterior wall will not extend to the skull base (i.e., the sphenoethmoid or Onodi cell is superior and lateral to the sphenoid sinus).

The roof of the sphenoid is level anteriorly with the skull base. It is fairly flat and is called the planum sphenoidale (Fig. 31).

The junction of the planum sphenoidale and posterior sphenoid wall is thickened to form the tuberculum sella. The optic chiasm is about 2–7 mm posterior to the tuberculum sella. Inferior to the tuberculum sella, the posterior wall forms the anterior wall of the sella turcica (Figs. 12, 31, 32). The pituitary gland is located within the sella turcica. Inferiorly, the posterior wall separates the clivus.
The lateral wall may reveal two prominences. The anterolateral prominence on the lateral wall is formed by the optic nerve. The posteroinferior prominence is formed by the cavernous carotid artery (Fig. 12). In a well-pneumatized specimen, these structures may be dehiscent (the optic nerve is dehiscent in 4–5% of cases, and the carotid in up to 20%). Occupying the space between the two is a small recess called the infraoptic recess, also referred to as the opticocarotid recess (Fig. 12).

The frontal recess (Figs. 3, 7, 25–27) is a complex anatomical area leading from the anterior ethmoids up to the frontal ostium. Its anatomic boundaries are:

<table>
<thead>
<tr>
<th>Anterior</th>
<th>agger nasi cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior</td>
<td>anterior ethmoid artery</td>
</tr>
<tr>
<td>Medial</td>
<td>anterior portion of the middle turbinate</td>
</tr>
<tr>
<td>Lateral</td>
<td>lamina papyracea</td>
</tr>
</tbody>
</table>

The superior attachment of the uncinate process determines the drainage pattern of the frontal sinus.

In 86% of patients, the uncinate process is attached to the lamina papyracea and the infundibulum ends superiorly against the lamina papyracea as the recessus terminalis. In such cases, the frontal recess drains into the space between the uncinate and the middle turbinate (Fig. 3).

In 14% of cases, the uncinate either attaches superiorly to the skull base or laterally to the middle turbinate. The frontal sinus will drain directly into the infundibulum in these configurations.

The agger nasi cell (Fig. 1) forms the anterior limit of the frontal recess. It is in approximately the same coronal plane as the nasolacrimal duct. An enlarged agger nasi cell may impinge on the frontal sinus, narrowing the frontal recess.
Frontal ethmoid cells, as described and classified by KUHN, are additional anterior ethmoid cells located superior to the agger nasi. When present, they can cause further narrowing of the frontal recess from the anterior. Frontal cells are classified as types 1 to 4 (refer to the literature by KUHN).

The anterior ethmoid artery (Figs. 28, 30), a branch of the ophthalmic artery, lies in the roof of the ethmoid sinus and forms the posterior limit of the frontal recess. This artery is in the same coronal plane as the anterior aspect of the ethmoid bulla or just behind. Therefore, the anterior wall of the bulla may be considered to be the posterior extent of the frontal recess. After leaving the orbit through the anterior ethmoid foramen, the anterior ethmoid artery crosses the anterior ethmoid complex in a medial and anterior direction, then exits the ethmoid complex to run anteriorly in the olfactory groove. It then passes through a slit by the side of the crista galli and returns through the cribiform plate to re-enter the nasal cavity.

The nasolacrimal system (Fig. 16) comprises the lacrimal sac and the nasolacrimal duct. The lacrimal sac is formed by the lacrimal bone, and the anterior and posterior lacrimal crests. It is located lateral to the agger nasi.
Dissection of the Lateral Nasal Wall

1. Remove the nasal septum completely and study the lateral nasal wall.

Use a ball probe to palpate the various bony prominences, soft tissue and sinus openings.

**Identify:**
- Frontal sinus
- Agger nasi
- Nasolacrimal prominence
- Inferior, middle and superior meatus
- Sphenoethmoid recess, sphenoethmoid cell (if any)
- Sphenoid sinus

Note the attachment of the middle turbinate anteriorly to the skull base and posteriorly to the lateral nasal wall.

2. Reflect the middle turbinate medially and superiorly, and

**Identify the:**
- Uncinate process
- Bulla ethmoidalis
- Hiatus semilunaris inferioris and superioris
- Ethmoid infundibulum
- Retrobullar/suprabullar recess
- Posterior fontanelle

With a ball probe, palpate the boundaries of the ethmoid infundibulum. Medially, the uncinate process; laterally, the lamina papyracea; and, posteriorly, bulla ethmoidalis.

Gently palpate the attachments of the uncinate process.

Pass a ball probe in the ethmoid infundibulum lateral to the uncinate, and try to palpate its superior attachment. Is there a recessus terminalis? (86% of cases)

Pass a probe from the frontal sinus through its ostia and note where it appears in relation to the uncinate process.

Is it medial to the uncinate (86% of cases), or is it lateral (14% of cases)?

3. Remove the middle turbinate with iridectomy scissors, trimming its anterior attachment from the skull base and then the basal lamella.

**Note the five lamellas:**
- Uncinate process
- Bulla ethmoidalis
- Basal lamella of the middle turbinate
- Basal lamella of the superior turbinate
- Anterior wall of the sphenoid

Study the superior attachment of the uncinate process.

Note the bulla ethmoidalis and its relationships. Does it extend superiorly to the skull base? Is there a suprabullar recess?

Study the attachment of the basal lamella.

Palpate the boundaries of the retrobullar recess. Anteriorly, the bulla ethmoidalis; posteriorly, the basal lamella; superiorly, the ethmoid roof.

4. Uncinectomy

Using a reverse-cutting forceps, remove the part of the uncinate process from the junction of the anterior superior part of uncinate with the inferior posterior part. Note that the natural maxillary ostium is located in the ethmoid infundibulum. Pass a probe superiorly into the ethmoid infundibulum to feel the superior attachment of the uncinate process.

Using a #11 blade, detach the anterior, inferior and superior attachments of the uncinate process and remove it.

**Identify:**
- Lamina papyracea
- Natural maxillary ostium
- Posterior fontanelle

Look for any Haller (infraorbital ethmoid) cell or accessory ostia.
5 Middle Meatal Antrostomy

Engage an iridectomy scissors in the maxillary ostium, and make two cuts in the posterior fontanelle. The first cut is superior flush, with the roof of the maxillary sinus. The other cut is inferior, flush with the inferior turbinate. Remove the posterior fontanelle to create a wide middle meatal antrostomy.

Identify:

Study the anatomy of the maxillary antrum. Identify the infraorbital nerve.

6 Dissection of the Frontal Recess

Study the boundaries of the frontal recess. These are: anteriorly, the agger nasi cell; posteriorly, the anterior wall of the bulla ethmoidalis; laterally, the lacrimal sac and lamina papyracea; and, medially, the middle turbinate (removed).

Remove the posterior and medial wall of the agger nasi to identify the frontal opening and drainage pattern.

Note that the lateral wall of the agger nasi is related to the lacrimal fossa. Identify the frontal beak and remove it using a curette or drill to widen the frontal opening.

The frontal opening is exposed from the anterior wall of the agger nasi to the anterior wall of the bulla.

7 Dissection of the Anterior Ethmoid

Remove the anterior wall of bulla ethmoidalis, keeping the posterior wall intact. With a ball probe, look for any opening in the posterior wall. The bulla usually drains in the retrobullar recess through an opening in the posterior wall.

Remove the bulla completely as well as all anterior ethmoid cells anterior to the basal lamella, while keeping the basal lamella intact.

Identify:

- the ethmoid roof from the posterior table of the frontal sinus to the basal lamella.
- the anterior ethmoidal artery. It may be closely applied to the skull base, on a mesentery or running freely across the ethmoid cavity. Note that the artery runs from posterolateral to anteromedial direction.

8 Dissection of the Posterior Ethmoid

Remove the superior turbinate.

Study the attachments of the basal lamella.

Identify:

- the sphenoid ostium, and note whether the anterior sphenoid wall extends up to the skull base.

Note the presence or absence of any sphenoethmoid cells, and look for the prominence of the optic nerve.

Remove the basal lamella and all posterior ethmoid cells.

Identify:

- the posterior ethmoid artery. It may not be always identifiable as it runs in the skull base.

Skeletonize the lamina papyracea from the nasolacrimal duct to the optic tubercle.

9 Skull Base

Identify:

- the skull base from the posterior table of the frontal sinus to the planum sphenoidale.

Note that the skull base slopes inferiorly from anterior to posterior, being more flattened toward the posterior ethmoids/sphenoid.
10 Sphenoid Sinus

Identify:
- the sphenoid ostium,
- anterior sphenoid wall,
- planum,
- tuberculum sella and
- sella turcica.

Identify:
- the optic nerve and the cavernous carotid artery on the lateral wall of the sinus, and study its relationship to the cavernous sinus.

Remove the anterior wall of the sphenoid sinus.

Using a diamond burr, remove the bone overlying the soft tissue on the lateral wall of the sphenoid sinus.

Identify:
- the medial layer of the cavernous sinus, which can be extremely thin.

Gently slit the medial layer of the cavernous sinus to expose its contents.

Note that the cavernous portion of the internal carotid artery is the most medial structure in the cavernous sinus.

Identify:
- the entire course of the cavernous carotid artery from the petrous apex, and note its relationship with the sella turcica.

Mobilize and retract the artery superiorly and medially.

Identify:
- the oculomotor, abducent and the trochlear nerves, which are lateral to the artery.

11 Nasolacrimal Drainage System

Detach the anterior end of the inferior turbinate, and look for the opening of the nasolacrimal duct in the inferior meatus. It is often covered by a mucosal flap called the Hasner’s valve.

Pass a probe through the Hasner’s valve into the nasolacrimal duct.

Study the bony canal of the nasolacrimal duct.

Note that, the bone is thicker anteriorly, formed by the frontal process of the maxillary, and it is thinner posteriorly, formed by the ethmoid bone.

Remove the bony wall to expose the nasolacrimal duct. The thinner posterior portion may be removed with a curette, and the thicker anterior part with a rongeurs.

Note the dimensions of the nasolacrimal duct. Slit open the duct and the lacrimal sac, and look for the opening of the common canaliculus of the lateral wall of the lacrimal sac.

Note that the superior limit of the lacrimal sac is about 5 mm superior to the opening of the common canaliculus.
Endoscopic Sinus Dissection

Prior to beginning a dissection, it is important to clean any debris and secretions from the nasal cavity of the specimen.

Debris in the intranasal cavity may be cleaned using suction or unfolded 4 x 4 gauze grasped with a Blakesley forceps.

After the nasal cavity is cleaned, a 30°-telescope, 4 mm in diameter, is introduced into the nasal cavity.

Nasal Endoscopy

The first step is to perform a nasal endoscopy, which is performed by two passes.

First Pass
Begin by advancing the telescope into the nose, following the nasal floor and looking at the inferior turbinate, the free edge of the middle turbinate and the superior aspect of the nasal cavity. Approximately two thirds of the way through the nasal cavity, the posterior aspect of the middle meatus will come into view. This is the region of the posterior fontanelle. Continue to advance the scope posteriorly, identifying the Eustachian tube orifice, the fossa of Rosenmuller and the nasopharynx. As the scope is withdrawn, try to insinuate it under the inferior turbinate to examine the inferior meatus. In some cases, the nasolacrimal duct opening or Hasner’s valve can be visualized as either a small punctate or slit-like opening at the junction of the anterior and middle thirds of the inferior turbinate. To visualize this structure, a Freer elevator can be used to medialize the inferior turbinate.

Second Pass
The endoscope is reintroduced into the nose to more closely examine the middle meatus. Proceed to the anterior head of the middle turbinate and observe the structures within the anterior aspect of the middle meatus.

The middle meatus is often shielded from view by the uncinate process and middle turbinate. The insertion of the uncinate process can be identified by a shallow groove just behind the lacrimal fossa.

Note the bulla ethmoidalis and identify the hiatus semilunaris inferioris and superioris. Notice whether the ethmoid bulla inserts to the skull base.

It may be possible to identify the frontal opening and the retrobullar recess.

The natural maxillary ostium is hidden from view as it lies within the infundibulum. The uncinate process has to be removed to visualize it.
Continue slightly more posteriorly, gaining a better view of the posterior fontanelle. Accessory ostia can often be seen in this region and may indicate maxillary disease caused by mucus recirculation.

When the posterior aspect of the middle meatus has been examined, direct the telescope just medial to the middle turbinate and advance it slightly more posteriorly. The region between the nasal septum and the middle turbinate can be somewhat difficult to access. High up on the sphenoid rostrum, at about the level of the superior turbinate or slightly inferiorly, the sphenoid ostium can be visualized just medial to the turbinate.

2 Infundibulotomy

Aims

- to gain access to the ethmoid infundibulum
- to identify the lamina papyracea
- to identify the natural ostium of the maxillary sinus
- to identify the recessus terminalis, if any
- to identify the frontal recess

Anatomy

With a Freer elevator, gently medialize the middle turbinate and study the anatomy of the ostiomeatal complex, which comprises the uncinate process, ethmoidal bulla, middle turbinate and frontal recess.

Visualize the entire uncinate process and delineate its posterior free margin. Study the attachments of the uncinate process.

Just posterior to the uncinate process is the ethmoidal bulla, which can assume a variety of configurations and does not always have to be pneumatized.

Identify the cleft between the uncinate process and the ethmoidal bulla, which forms the hiatus semilunaris inferioris. Notice that the posterior free edge of the uncinate slopes inferiorly as it runs backward to lie just above the inferior turbinate.

With an endoscope, examine the small cleft between the uncinate process and the anterior insertion of the middle turbinate into which the frontal recess opens in most situations (86% of cases), if a recessus terminalis is present.

Technique

Having confirmed the position of the hiatus semilunaris inferioris with a ball probe and palpated the infundibulum, a small backbiter is inserted into the middle meatus. The instrument is turned 90 degrees so that the biting blade is opened upward, in the vertical plane of the meatus. The open blade is then rotated back 90 degrees to engage the posterior free edge of the uncinate.

---

Fig. 19
Endoscopic view of the nasolacrimal duct opening in the left inferior meatus. IT – left inferior turbinate; ⭐ – nasolacrimal duct opening.

Fig. 20
The uncinate process (U) has been partially removed at the junction of its anterosuperior portion with its posteroinferior part. ⭐ – the location of the natural maxillary ostium, which is only partially visible with a 0°-telescope.
It is important to ascertain whether the blade is inside the infundibulum prior to engagement so that the backbiting cut will go cleanly through the entire thickness of the uncinate without stripping mucosa.

The small backbiter is brought forward for a further bite. If solid, unyielding bone is encountered by the backbiter, then one is approaching the area of the nasolacrimal duct. Backbiting a third time is therefore unsafe.

The upper uncinate process can now be mobilized with a ball probe, rotating medially around the agger area as the fulcrum. This makes it easier for the edge to be grasped.

A 90 degree upturned BLAKESLEY forceps is used to grasp the mobilized uncinate, holding it as close to the lacrimal crest attachment as practical. The uncinate can then be avulsed cleanly with a quick posteriorly directed push.

Any residual superior uncinate, either bone or mucosa, can be cleaned with the microdebrider.

**Recommendations**

- It is important to resect the uncinate process in its entirety, especially superiorly and inferiorly, in order to adequately visualize the frontal recess and the maxillary ostium, respectively.

- Engage the uncinate free edge as low as possible prior to backbiting. The natural ostium is located inferiorly in the infundibulum and may be obscured by a tall uncinate remnant.

An inferior uncinate remnant may be removed by first attempting to fillet out the bony core using a fine ball probe. This should be done prior to shaving down the mucosa with a microdebrider.

### 3 Middle Meatal Antrostomy

**Aims**

- **Identify:**
  - the natural maxillary ostium and widen it posteriorly to form a middle meatal antrostomy.

**Anatomy**

After removal of the uncinate process, the ethmoid bulla and maxillary ostium should be visible. The ostium lies at the junction of the anterior and inferior walls of the ethmoidal bulla.

If the ostium is not seen clearly with a 30°-telescope, it may be very laterally located. In such situations, use a 45°- or 70°-telescope to examine the lateral nasal wall and identify the natural maxillary ostium. If the ostium is incompletely visualized, it may be necessary to take a curette and remove any residual uncinate process.

Examine the posterior fontanella for any accessory ostium.

---

**Fig. 21**  
A 70°-telescope is used to visualize the left natural maxillary sinus ostium (>). The uncinate process (U) has been partially removed. Note that the ostium is at the junction of the anterior and inferior aspects of the bulla ethmoidalis (B).

**Fig. 22**  
The uncinate process has been completely removed, opening the ethmoid infundibulum, which is bounded laterally by the lamina papyracea (L). The ethmoid bulla (B) that forms the posterior wall of the ethmoid infundibulum is still intact.
Technique

Once the maxillary ostium is identified, take a straight scissors. Engage one blade of the scissors in the maxillary ostium and the other outside it, and cut into the posterior fontenelle, flush with the roof of the maxillary sinus as far back as the posterior wall of the maxillary sinus.

Make a similar cut flush with the superior margin of the inferior turbinate.

Remove the posterior fontenelle between these two cuts with a through-cutting Blakesley forceps as far back as the palatine bone (posterior wall of the maxillary sinus).

If the ostium is fairly lateral and not accessible with a straight scissors, use a right-curved scissors for the left side, and a left-curved scissors for the right side. The curvature of the blades may help to reach the ostium.

If an accessory ostium is visualized, a backbiting forceps may be used to perform the middle meatal antrostomy. The forceps engages the accessory ostium and backbites forward to join the natural ostium.

Alternatively, a backbiting forceps can be used to remove the inferior margin of the antrostomy, and an upbiting Blakesley can be used to remove the superior portion of the fontenelle adjacent to the ostium.

These maneuvers should provide wide exposure to the maxillary sinus. In real cases, the antrostomy is, of course, not as large.

Examine the interior of the maxillary sinus, using 30°-, 45°- and 70°-telescopes. The ridge of the inferior orbital nerve along the antral roof can be visualized.

Recommendations

- Ascertain that the natural ostium is contiguous with the remainder of the antrostomy in order to prevent recirculation.
- Using backbiting forceps, gently remove any residual uncinate process adjacent to the maxillary ostium. Do not engage too far forward, however, to avoid injury to the nasolacrimal duct.
- Any heavy bone that is encountered in the course of this dissection should not be resected because this is usually the firm bone that sits around lacrimal sac and duct.
- Although the antrostomy can be performed at any time, it is preferably done before opening the bulla. Maintaining the bulla provides a landmark for the junction of the medial and inferior orbital walls, thus enabling the surgeon to easily find the adjacent ostium and prevent damage to the lamina papyracea in situations where the ostium is difficult to find.

Fig. 23
A middle meatal antrostomy (●) has been created by extending the natural maxillary ostium into the posterior fontenella.

B – ethmoid bulla. Note the location of the sphenopalatine foramen (●) and a branch of the sphenopalatine artery entering the nasal cavity.

Fig. 24
The sphenopalatine foramen has been opened into the pterygopalatine fossa (●) to expose the sphenopalatine artery hooked by a ball probe.
Dissection of the Anterior Ethmoid

Aims

- to remove the ethmoidal bulla and ethmoidal cells anterior to the ground / basal lamella
- to identify the anterior skull base, anterior ethmoidal artery and retrobullar recess
- to maintain an intact ground lamella

Anatomical Boundaries

The boundaries of the dissection are:

- anteriorly, the ethmoid infundibulum
- laterally, the lamina papyracea
- medially, the middle turbinate
- superiorly, the skull base
- posteriorly, the ground lamella

Technique

Infracture and remove the anterior wall of the ethmoidal bulla. Remove the inferior and medial walls completely, while attempting to keep the posterior wall intact.

Identify:

- the lamina papyracea, which forms the lateral wall of the ethmoidal bulla. This forms the lateral landmark of the dissection in the anterior ethmoid cavity. Its plane may be gauged by visualizing via the antrostomy where the orbital floor turns up to the medial orbital wall.

Identification of the anterior skull base is the next step. Begin the dissection from posterior to anterior to define the skull base. There are often some small cells sitting superior to the ethmoidal bulla, which are termed the suprabullar cells.

As the skull base begins to curve superiorly, it forms a structure called the ethmoidal dome. On the more anterior aspect of this structure, the anterior ethmoid artery is visible crossing transversely.

The anterior ethmoid artery can either be freely exposed, attached on a bony mesentery or contained within a bony canal flush with the ethmoidal dome. There is often a triangular cell just cephalad to the anterior ethmoid artery. This triangular cell sits behind the back wall of the frontal sinus opening and is called the supraorbital cell. The anterior ethmoid artery does not necessarily have to be perfectly transverse, but can actually be oblique to the sagittal plane. Accompanying the anterior ethmoid artery is the anterior ethmoid nerve.

Next, carefully perforate the posterior wall of the ethmoidal bulla. In those circumstances where the posterior wall is not fused with the ground lamella of the middle turbinate, the retrobullar recess can be identified just behind the bulla.

Carefully remove the entire posterior wall to clearly identify the retrobullar recess. This recess is an excellent anatomic landmark that is helpful for identification of the skull base. The skull base forms the superior limit if this variable funnel-shaped space. If this maneuver is

![Fig. 25](image)

Endoscopic view of the frontal recess. Note the relationship of the agger nasi (A) with the frontal recess. A curette has been passed through the frontal recess into the frontal sinus. M – middle turbinate; B – the location of the ethmoid bulla.

![Fig. 26](image)

The medial, posterior and superior wall of the agger nasi has been removed to open the frontal sinus (>). The ethmoid bulla (B) is still intact. M – the position of the middle turbinate, which forms the medial boundary of the frontal recess; L – the lamina papyracea, which forms the lateral boundary.
successfully performed, then the ground lamella of the middle turbinate will be left intact.

Carefully examine the ground lamella and note how it connects the middle turbinate to the lamina papyracea in its more posterior portion. Anterosuperiorly, the ground lamella turns up to join the skull base and inserting at the junction of the cribiform plate and the fovea ethmoidalis just posterior to the anterior ethmoid artery.

**5 Dissection of the Posterior Ethmoid**

**Aims**

- to dissect the posterior ethmoidal cells
- identify the skull base, posterior ethmoidal neurovascular bundle, anterior sphenoid wall, superior turbinate and sphenoid ostium

**Anatomical Boundaries**

The ground lamella of the middle turbinate forms a partition between the anterior and posterior ethmoid cells.

The anatomical boundaries are:

- anteriorly, the ground lamella
- posteriorly, the anterior sphenoid wall
- laterally, the lamina papyracea
- superiorly, the skull base
- medially, the superior turbinate

**Technique**

Perforate the ground lamella to delineate the posterior ethmoid cells. Notice that the posterior ethmoidal cells are generally larger than the anterior ethmoid cells. The safe area to perforate is medially and inferiorly, just above the point where the ground lamella turns from vertical to horizontal.

**Identify:**

- the lamina papyracea and the skull base, then carefully remove the septations of the posterior ethmoid cells from the medial orbital wall and the skull base.

**Identify:**

- the posterior ethmoid artery and nerve, which is present in approximately 70% of cases. This landmark is very helpful in that it lies several millimeters just anterior to the anterior wall of the sphenoid.

Examine the anterior wall of the sphenoid. When it is demucosalized, it has a slightly bluish hue compared with the yellowish color of the medial orbital wall and skull base. Also, notice how the skull base descends inferiorly as it moves in an anterior to posterior direction. Failure to recognize the descent of the anterior cranial fossa can result in cranial breach just anterior to the anterior sphenoid wall.

**Identify:**

- the superior turbinate medially.

---

![Fig. 27](image1.png)  
**Fig. 27**  
Endoscopic view of the **frontal recess (★)** with the ethmoid bulla (B) intact.

![Fig. 28](image2.png)  
**Fig. 28**  
The ethmoid bulla has been removed to expose the skull base (S) and the **anterior ethmoid artery (★)**, which usually traverses the skull base obliquely from a posterosuperior to anteromedial direction. The point where the anterior ethmoid artery enters the lamina cribrosa is the weakest point of the entire skull base. It has about one tenth of the thickness of the skull base.

M – middle turbinate; L – lamina papyracea; (★) – frontal sinus.
Dissection of the Sphenoid Sinus

Aims
- to perform a sphenoidotomy
- to remove the anterior sphenid wall
- to examine the intrasphenoid anatomy

Anatomy
The following structures should be identified:

Laterally: Posterosuperiorly, the optic nerve
Posteroinferiorly: the cavernous internal carotid artery
Inferiorly: the maxillary branch of the trigeminal nerve and the vidian nerve
Superiorly: Planum sphenoidale
Posteriorly: from superiorly to inferiorly, the tuberculum sella, anterior sellar wall and clivus

Technique
Sphenoidotomy

Accurately identifying the anterior sphenoid wall is most important. Several maneuvers are helpful in identification of the anterior sphenoid wall.

The anterior wall is often found 7 cm from the anterior nasal spine at 30 degrees inclination from the floor of the nose. This is quite variable and must be recognized as a guide only.

Recommendations

- To enter the posterior ethmoid cells, perforate the ground lamella inferiorly and medially.
- To ensure good access to the sphenoid sinus, it is important that the ground lamella and any residual posterior wall of the ethmoidal bulla be taken down to their most inferior extent.
- Once the posterior ethmoid dissection is complete, carefully examine the lateral superior aspect of the posterior ethmoid cell.

Two structures in this region are of interest:

First, the optic nerve can indent into the posterior ethmoid sinus in this region. The optic nerve appears as a whitish structure very similar to the skeletonized facial nerve in the mastoid cavity.

The second structure of interest in this area is the sphenoid cell or Onodi cell, a posterior ethmoid cell that pneumatizes lateral and superior to the sphenoid, extending beyond the anterior wall of the sphenoid. It is pyramidal in shape with three walls consisting of the anterior wall of the sphenoid, skull base and medial orbital wall. The optic nerve runs in the lateral wall.

Fig. 29
Endoscopic view of the boundaries of the posterior ethmoid cells (P), bounded medially by the superior turbinate (S), laterally by the lamina papyracea (L) and superiorly by the skull base (★). Note that the skull base is flat posteriorly. Also note the sphenoid ostium medial to the superior turbinate in the sphenoid cell recess. M – middle turbinate.

Fig. 30
A complete ethmoidectomy has been performed by removing the posterior ethmoid cells to expose the skull base (S) and lamina papyracea (L). ★ – anterior ethmoid artery.
Once the anterior wall of the sphenoid is penetrated, gently remove the bony anterior face. This is achieved with a circular cutting STAMMBERGER punch and a selection of KERRISON rongeurs. Complete the removal up to the level of the skull base and out to the medial orbital wall.

Once the bilateral sphenoidotomies have been completed and the sphenoid sinus is widely exposed, study the intrasphenoid anatomy using 0°-, 30°-, 45°- and 70°-telescopes.

Intrasphenoid Anatomy

Note the pattern of sphenoid pneumatization, sphenoid dominance and intersinus septi.

Sphenoid Pneumatization

The sphenoid sinus has been classified into three types. These include conchal, presellar and sellar, depending on the extent to which the sphenoid bone is pneumatized.

In the conchal type, the area below the sella is a solid block of bone without an air cavity. It is most common in children below the age of 12, at which time the pneumatization begins within the sphenoid sinus.

In the presellar type, the sinus cavity does not penetrate beyond a plane perpendicular to the sellar wall.

The sellar type is the most common, and in this type, pneumatization extends into the body of the sphenoid below and beyond the sella, and may extend posteriorly as far as the clivus.

Removal of the Anterior Sphenoid Wall

Staying inferomedially, gently infracture the anterior sphenoid wall with the straight BLAKESLEY forceps or an antrum curette. The anterior sphenoid wall can be quite well ossified and difficult to penetrate. Up to 5% of sphenoid sinuses are not pneumatized.

Another helpful identification method is placing a straight suction tube onto the anterior sphenoid face medial to the middle turbinate, then grasping the tube where it is even with the columella. While holding onto the suction tube at this point, remove it from the nose and then place it lateral to the middle turbinate and advance it into the resected ethmoid cavity. When the fingers on the suction tube are at the level of the columella, the tip of the tube should mark the anterior wall of the sphenoid sinus.

The posterior ethmoidal neurovascular bundle and the superior turbinate are important landmarks for the anterior sphenoid wall.

The most reliable method is to identify the sphenoid ostium. The sphenoid ostium is usually located in the sphenoethmoid recess, medial to the superior turbinate and lateral to the posterior nasal septum, and about 1.5 cm superior to the posterior choana. Once the ostium is identified, it may be widened inferiorly and medially with a KERRISON punch or BLAKESLEY forceps.

Fig. 31
The intrasphenoid anatomy. Note the planum sphenoidale (P), optic nerve (O), cavernous carotid artery (C), anterior wall of the sella turcica (S), and the tuberculum sella (K).

Fig. 32
The bone has been drilled away to expose the soft tissue within the sphenoid sinus. Note the optic nerve (O), cavernous carotid artery (C), sella turcica (S) and clivus (CL).
Intersinus Septi
Note the presence within the sphenoid sinus of any intrasinus septi. These intersinus septi often insert on the bone forming the carotid canal. Rupturing one of these septi during live surgery could cause catastrophic injury to the carotid artery.

With the anterior wall of the sphenoid removed, gently try to free its mucosa from the superior and lateral aspects in order to observe lateral wall structures and their relationships. Note the optic nerve, internal carotid artery and maxillary branch of trigeminal nerve.

Anterior Sellar Wall
The anterior wall of the sella is recognized by its midline bulge inferior to the tuberculum sella. The appearance of the dura through the thin anterior sellar wall imparts a bluish hue to the sella that aids in its identification.

Planum Sphenoidale
With a 30° endoscope look at the planum sphenoidale, which forms the roof of the sphenoid sinus and continues anteriorly as the skull base.

Dissection of the Frontal Recess
Aims
The underlying principle of dissection in the frontal recess is:

■ to understand the anatomical boundaries of the frontal recess and to expose the frontal recess

Dissection of the frontal recess is achieved by:

■ Completely removing the agger nasi cell
■ Completely removing cells within the frontal recess, while preserving the mucus membrane of the frontal recess and maintaining the stability of the middle turbinate

Anatomical Boundaries

■ anteriorly, the agger nasi
■ posteriorly, the anterior ethmoid neurovascular bundle
■ Medially, the middle turbinate
■ Laterally, the lacrimal fossa

Technique
Dissection of the frontal recess is addressed last in the dissection procedure. It enables the surgeon to identify the skull base posteriorly, which is the most useful landmark. The skull base is followed from posterior to anterior, identifying the anterior ethmoid neurovascular bundle that forms the posterior boundary of the frontal recess.

Identification of the anterior ethmoid neurovascular bundle provides a reliable landmark as the posterior limit of the frontal recess.

The opening to the frontal sinus can sometimes be visualized by following the middle turbinate (medial) and residual uncinate process (lateral) in dissecting toward the skull base.
Following the cleft between these two structures will often open up the frontal os.

(To identify the frontal sinus opening, ensure that all residual uncinate process has been resected.)

**Removal of the Agger Nasi Cell**

Extend the infundibulotomy incision into the agger nasi cells just lateral to the insertion of the middle turbinate on the lateral nasal wall. This maneuver provides improved access to the agger nasi cells and gives more direct access to the frontal opening.

With upbiting BLAKESLEY forceps, carefully remove the anterior wall and any lamellae from the agger nasi cell group that will lie just anterior to the frontal opening.

When the frontal opening is identified, use an upbiting Blakesley forceps or antrum curette to **take down the anterior wall of the ostium**, which is shared in common with the rear wall of the most posterior agger nasi cell. The posterior table of the frontal sinus should be clearly visible. Study the relationship between the agger nasi and lacrimal cells to the opening of the frontal sinus. These cells are anteriorly and somewhat laterally displaced, and can often be quite extensive in their pneumatization up into the nasal bone and anterior table of the frontal sinus, and can often mimic a frontal sinus.

---

**Advanced Endoscopic Surgical Techniques**

Once the sphenoethmoidectomy is complete, additional maneuvers can be performed.

1. **Endoscopic Dacrocystorhinostomy**

An antrum curette can be used to identify the lacrimal sac and the lacrimal fossa. This structure is most easily located by returning to the previous infundibulotomy and peeling back the mucosa anterior to the site of the uncinate process insertion. The bony lacrimal fossa is often quite dense. If this bone is removed, the lacrimal sac can be identified. Its presence can be confirmed by palpation of the lacrimal sac and endoscopically observing the transmitted pulsations. A sickle knife can be used to incise the lacrimal sac to examine its interior. Identify the opening of the common canalculus on the lateral wall of the lacrimal sac by passing a probe through the punctum.

2. **Orbital Decompression**

At this time, an orbital decompression procedure can be practiced. This procedure is performed by removing the medial orbital wall to the orbital apex and leaving the bone covering the optic nerve canal. Resection of the lamina papyracea can be continued along the orbital floor laterally to the level of the inferior orbital nerve. It is important to leave remnants of the lamina papyracea just lateral to the frontal ostium in order to prevent medializing orbital contents from obstructing the frontal ostium. A sickle knife can be used to incise the periorbita. Begin just medial to the infraorbital nerve, then proceed in an inferior-to-superior direction along the lamina papyracea.

3. **Orbital Apex Decompression**

The body of the sphenoid sinus forms the medial boundary of the optic canal at the orbital apex. This medial wall can be removed or drilled away to expose the **annulus of Zinn**.

The annulus of Zinn is a fibrous tendinous funnel at the orbital apex that gives rise to five of the six extraocular muscles. The annulus is firmly fused dorsally to the optic nerve. It is divided into two compartments by a dural plane.

The medial compartment contains the optic nerve and ophthalmic artery.

The lateral compartment is also called the oculomotor foramen, which transmits:

- the upper and lower branch of oculomotor nerve
- the VI cranial nerve and the nasociliary nerve (VI)

Incise the annulus of Zinn with a sickle knife to gain access to the medial compartment. Identify the optic nerve.
4 Optic Nerve Decompression

Each optic nerve leaves the chiasm and travels about 15 mm through the intracranial subarachnoid space to enter the optic canal.

The optic canal is bounded medially by the body of the sphenoid and laterally by the optic strut. It is about 5 to 10 mm long and 4.5 mm wide, with an average height of 5 mm. The roof of the canal is 1 to 3 mm thick.

Remove the medial wall of the optic canal to expose the optic nerve from the orbital apex to the optic chiasm.

After leaving the chiasm, each optic nerve travels about 15 mm within the intracranial subarachnoid space. Upon entering the optic canal the nerve is invested with dura mater that forms the dural-periosteal layer. At the anterior end of the canal, the dural splits into two layers. The inner layer forms the dura of the optic nerve and the outer layer becomes the periorbita. The intraorbital course of the optic nerve is approximately 30 mm. The subarachnoid space is maintained throughout the posterior margin of the globe.

Incise the dural sheath, decompressing the nerve from the orbital apex to the optic chiasm.

5 Exposure of the Sella Turcica

Practice the transseptal approach. Make a left hemitransfixion incision, and elevate a mucoperichondrial flap on the left side up to the junction of the septal cartilage with the bony nasal septum. Dislocate this attachment and elevate the bilateral mucoperiosteal flaps posteriorly to expose the remnant anterior sphenoid wall in the midline. Remove the sphenoid keel. The transseptal access to the sphenoid sinus is completed. Examine the intrasphenoid anatomy and identify the anterior sellar wall.

The anterior sellar wall is usually fairly thin and can be fractured with the tip of a BLAKESLEY forceps. Remove the anterior sellar wall to expose the dura. Incise the dura with a size 11 blade and examine the intrasellar anatomy with 0° and 30° telescopes. Remove the sellar contents and identify the diaphragma sella.

6 Repair of CSF Fistula

Last, with an upbiting BLAKESLEY forceps or an antrum curette, disrupt the floor of the anterior cranial fossa. Note how thin it is adjacent to the middle turbinate insertion laterally. It becomes thicker in the posterior ethmoid and its more lateral extent adjacent to the orbit. The two most common sites of skull base entry are at the level of the ethmoid dome where the middle turbinate inserts and just anterior to the anterior sphenoid wall.

Attempt to close the created fistula with a free mucosal flap. Practice instrument handling.
Instrument Set for
Basic and Advanced Endoscopic Sinus Surgery Techniques
as recommended by

Dr. Dharambir S. SETHI, FRCS (Ed) FAMS (ORL)
Department of Otorhinolaryngology, Singapore General Hospital
Republic of Singapore
HOPKINS® Telescopes
for Diagnosis, Surgery and Treatment of Nose and Paranasal Sinuses,
diameter 4 mm and 2.7 mm, length 18 cm

HOPKINS® Straight Forward Telescope 0°,
enlarged view, diameter 4 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: green

HOPKINS® Forward-Oblique Telescope 30°,
enlarged view, diameter 4 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: red

HOPKINS® Forward-Oblique Telescope 45°,
enlarged view, diameter 4 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: black

HOPKINS® Lateral Telescope 70°,
enlarged view, diameter 4 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: yellow

HOPKINS® Straight Forward Telescope 0°,
enlarged view, diameter 2.7 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: green

HOPKINS® Forward-Oblique Telescope 30°,
enlarged view, diameter 2.7 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: red

HOPKINS® Forward-Oblique Telescope 45°,
enlarged view, diameter 2.7 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: black

HOPKINS® Lateral Telescope 70°,
enlarged view, diameter 2.7 mm, length 18 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: yellow
HOPKINS® Telescopes – autoclavable
for Diagnosis, Surgery and Treatment of Nose and Paranasal Sinuses,
diameter 3 mm, length 14 cm

7220 AA
HOPKINS® Straight Forward Telescope 0°,
enlarged view, diameter 3 mm, length 14 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: green

7220 BA
HOPKINS® Forward-Oblique Telescope 30°,
enlarged view, diameter 3 mm, length 14 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: red

7220 CA
HOPKINS® Lateral Telescope 70°,
enlarged view, diameter 3 mm, length 14 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: yellow

It is recommended to check the suitability of the product for the intended procedure prior to use.
### FESS Instruments

#### Accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>723770</td>
<td>STAMMBERGER <strong>Telescope Handle</strong>, flat, standard model, length 11 cm, for use with HOPKINS® Straight Forward Telescopes 0° with diameter 4 mm and length 18 cm</td>
</tr>
<tr>
<td>723772</td>
<td>STAMMBERGER <strong>Telescope Handle</strong>, round, standard model, length 11 cm, for use with HOPKINS® Telescopes 30° – 120° with diameter 4 mm and length 18 cm</td>
</tr>
<tr>
<td>723774</td>
<td>STAMMBERGER <strong>Telescope Handle</strong>, round, length 11 cm, for use with HOPKINS® Telescopes with diameter 1.9/2.7 mm and length 18 cm</td>
</tr>
<tr>
<td>723750 A</td>
<td><strong>Protection Tube</strong>, for HOPKINS® Telescopes with length 11 cm</td>
</tr>
<tr>
<td>723750 B</td>
<td><strong>Protection Tube</strong>, for HOPKINS® Telescopes with length 18 cm</td>
</tr>
<tr>
<td>723005 A</td>
<td><strong>Trocar and Cannula for Sinuscopy</strong>, fenestrated beak, outer diameter 5 mm, length of the cannula 8.5 cm, for use with HOPKINS® Telescopes with diameter 4 mm</td>
</tr>
<tr>
<td>723005 B</td>
<td><strong>Trocar and Cannula for Sinuscopy</strong>, Oblique beak, outer diameter 5 mm, length of the cannula 8.5 cm, for use with HOPKINS® Telescopes with diameter 4 mm</td>
</tr>
<tr>
<td>723103 B</td>
<td><strong>Trocar and Cannula for Sinuscopy</strong>, oblique beak, outer diameter 3.3 mm, length of the cannula 7.5 cm, for use with HOPKINS® Telescopes with diameter 2.7 mm</td>
</tr>
</tbody>
</table>
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

BLAKESLEY RHINOFORCE® II Nasal Forceps, straight, size 0, with cleaning connector, working length 13 cm

BLAKESLEY-WILDE RHINOFORCE® II Nasal Forceps, 45° upturned, size 0, with cleaning connector, working length 13 cm

BLAKESLEY-WILDE RHINOFORCE® II Nasal Forceps, 90° upturned, size 1, with cleaning connector, working length 13 cm

BLAKESLEY-WILDE RHINOFORCE® II Nasal Forceps, 45° upturned, handle in right horizontal position, size 1, with cleaning connector, working length 13 cm
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

451000 B  GRÜNWALD-HENKE RHINOFORCE® II Nasal Forceps, straight, through-cutting, tissue-sparing, BLAKESLEY shape, size 0, width 3 mm, with cleaning connector, working length 13 cm

451001 B  Same, size 1, width 3.5 mm

451002 B  Same, size 2, width 4 mm

451500 B  GRÜNWALD-HENKE RHINOFORCE® II Nasal Forceps, 45° upturned, through-cutting, tissue-sparing, BLAKESLEY shape, size 0, width 3 mm, with cleaning connector, working length 13 cm

451501 B  Same, size 1, width 3.5 mm

451502 B  Same, size 2, width 4 mm

452001 B  MACKAY-GRÜNWALD RHINOFORCE® II Nasal Forceps, through-cutting, tissue-sparing, straight, delicate, 8 x 3 mm, size 1, with cleaning connector, working length 13 cm

452002 B  Same, 11.5 x 3.5 mm, size 2

452501 B  MACKAY-GRÜNWALD RHINOFORCE® II Nasal Forceps, 45° upturned, through-cutting, tissue-sparing, delicate, 8 x 3 mm, size 1, with cleaning connector, working length 13 cm

452502 B  Same, 11.5 x 3.5 mm, size 2

455010  STRUYCKEN RHINOFORCE® II Nasal Cutting Forceps, with cleaning connector, working length 13 cm
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

459012
STAMMBERGER RHINOFORCE® II Antrum Punch, upside backward cutting, with cleaning connector, working length 10 cm

459011
Same, right side backward cutting

459012
Same, left side backward cutting

459016
STAMMBERGER RHINOFORCE® Antrum Punch, backward cutting, sheath 360° rotatable, with fixing screw, take apart, working length 10 cm, for use with cleaning adaptor 459015 LL

459015 LL
Cleaning Adaptor
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

- **STAMMBERGER RHINOFORCE® II Antrum Punch**, small pediatric size, slender, upside backward cutting, with cleaning connector, working length 10 cm
  - **459030**
- **Same**, right side backward cutting
  - **459031**
- **Same**, left side backward cutting
  - **459032**

- **STAMMBERGER RHINOFORCE® Antrum Punch**, small pediatric size, slender, backward cutting, sheath 360° rotatable, with fixing screw, take apart, working length 10 cm, for use with cleaning adaptor 459015 LL
  - **459036**
- **Cleaning Adaptor**
  - **459015 LL**
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

459051 STAMMBERGER Antrum Punch, right side downward and forward cutting, working length 10 cm

459052 Same, left side downward and forward cutting

449201–449203 RHINOFORCE® II Nasal Scissors, straight, with cleaning connector, working length 13 cm

449202 Same, curved to right

449203 Same, curved to left
### FESS Instruments

**for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>651050</td>
<td><strong>STAMMBERGER Punch</strong>, circular cutting, for sphenoid, ethmoid and choanal atresia, with cleaning connector, working length 18 cm, diameter 4.5 mm, including Cleaning Tool 651050 R</td>
</tr>
<tr>
<td>651055</td>
<td><strong>Same</strong>, diameter 3.5 mm</td>
</tr>
<tr>
<td>651060</td>
<td><strong>STAMMBERGER Punch</strong>, circular cutting, 65° upturned, for frontal sinus/recess, with cleaning connector, working length 17 cm, diameter 3.5 mm, including Cleaning Tool 651050 R</td>
</tr>
<tr>
<td>651065</td>
<td><strong>Same</strong>, diameter 4.5 mm</td>
</tr>
<tr>
<td>651061</td>
<td><strong>STAMMBERGER Punch</strong>, tip egg-shaped, circular cutting, 65° upturned, for frontal sinus / recess, with cleaning connector, working length 17 cm, diameter 3.5 mm</td>
</tr>
<tr>
<td>651066</td>
<td><strong>Same</strong>, diameter 4.5 mm</td>
</tr>
<tr>
<td>651010</td>
<td><strong>STAMMBERGER RHINOFORCE® II Forceps</strong>, cupped jaws, vertical opening, 65° upturned, with cleaning connector, working length 12 cm, cupped jaws diameter 3 mm</td>
</tr>
<tr>
<td>651020</td>
<td><strong>Same</strong>, cupped jaws, horizontal opening, 65° upturned, with cleaning connector, working length 12 cm, cupped jaws diameter 3 mm</td>
</tr>
</tbody>
</table>
Nose Sinuses
Microscopic/Endoscopic Surgery in the Area of Paranasal Sinuses, Skull Base and Pituitary Surgery

FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

629826
KUHN Frontal Sinus Seeker, double-ended, No. 2, both sides curved 90°, one tip straight, one tip reverse angle, length 22 cm

629830
KUHN Frontal Ostium Seeker, double-ended, No. 6, both sides curved 77°, one tip straight, other tip reverse angle, length 22 cm

628702
Antrum Curette, oblong, small size, length 19 cm

628712
KUHN-BOLGER Frontal Sinus Curette, small, oblong, 55° curved, forward cutting, length 19 cm

628714
Same, 90° curved
FESS Instruments
for Endoscopic Diagnosis, Surgery and Postoperative Treatment of Paranasal Sinuses and Anterior Skull Base

- **v. EICKEN Antrum Cannula**, Luer-Lock, long curved, outer diameter 2.5 mm, working length 11 cm, length 15 cm
- **586330** *Same*, outer diameter 3 mm
- **586340** *Same*, outer diameter 4 mm

- **529305** *FRAZIER Suction Tube*, with mandrin and cut-off hole, with distance markings at 5 – 9 cm, 5 Fr., working length 10 cm
- **529307** *Same*, 7 Fr.
- **529309** *Same*, 9 Fr.
**UNIDRIVE® S III ENT SCB/UNIDRIVE® S III ECO**

The multifunctional unit for ENT

<table>
<thead>
<tr>
<th>Feature</th>
<th>UNIDRIVE® S III ENT SCB</th>
<th>UNIDRIVE® S III ECO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen: Straightforward function selection via touch screen</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Set values of the last session are stored</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Optimized user control due to touch screen</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Choice of user languages</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Operating elements are single and clear to read due to color display</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>One unit – multifunctional:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Shaver system for surgery of the paranasal sinuses and anterior skull base</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>- INTRA Drill Handpieces (40,000 rpm and 80,000 rpm)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- Sinus Shaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Micro Saw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- STAMMBERGER-SACHSE Intrasanal Drill</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>- Dermatome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- High-Speed Handpieces (60,000 rpm and 100,000 rpm)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Two motor outputs: Two motor outputs for simultaneous connection of two motors:</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>For example, a shaver and micro motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft start function</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Textual error messages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated irrigation and coolant pump:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Absolutely homogeneous, micro-processor controlled irrigation rate throughout the entire irrigation range</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>- Quick and easy connection of the tubing set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Easy program selection via automated motor recognition</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Continuously adjustable revolution range</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maximum number of revolutions and motor torque: Microprocessor-controlled motor rotation speed. Therefore the preselected parameters are maintained throughout the drilling procedure</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Maximum number of revolutions can be preset</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SCB model with connections to the KARL STORZ Communication Bus (KARL STORZ-SCB)</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Irrigator rod included</td>
<td>✓</td>
<td>-</td>
</tr>
</tbody>
</table>
## Motor Systems

### Specifications

#### System specifications

<table>
<thead>
<tr>
<th>Mode</th>
<th>Order No.</th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Shaver mode</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oscillating in conjunction</td>
<td>40712050</td>
<td>10,000*</td>
</tr>
<tr>
<td>with Handpiece:</td>
<td>40712055</td>
<td>10,000*</td>
</tr>
<tr>
<td>DrillCut-X® II Shaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handpiece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DrillCut-X® II N Shaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handpiece</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Sinus burr mode</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rotating in conjunction</td>
<td>40712050</td>
<td>12,000</td>
</tr>
<tr>
<td>with Handpiece:</td>
<td>40712055</td>
<td>12,000</td>
</tr>
<tr>
<td>DrillCut-X® II Shaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handpiece</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DrillCut-X® II N Shaver</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handpiece</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>High-speed drilling mode</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation mode:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counterclockwise or clockwise</td>
<td>20712033</td>
<td>60,000/100,000</td>
</tr>
<tr>
<td>in conjunction with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-Speed Micro Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Drilling mode</strong></td>
<td>[20 711033]</td>
<td>40,000/80,000</td>
</tr>
<tr>
<td>Operation mode:</td>
<td>[20 711173]</td>
<td></td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counterclockwise or clockwise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in conjunction with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro motor and connecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Micro saw mode</strong></td>
<td>[20 711033]</td>
<td>15,000/20,000</td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td>[20 711173]</td>
<td></td>
</tr>
<tr>
<td>in conjunction with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro motor and connecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Intranasal drill mode</strong></td>
<td>[20 711033]</td>
<td>60,000</td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td>[20 711173]</td>
<td></td>
</tr>
<tr>
<td>in conjunction with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro motor and connecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cable</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Dermatome mode</strong></td>
<td>[20 711033]</td>
<td>8,000</td>
</tr>
<tr>
<td>Max. rev. (rpm):</td>
<td>[20 711173]</td>
<td></td>
</tr>
<tr>
<td>in conjunction with:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>micro motor and connecting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Power supply:**

100 – 240 VAC, 50/60 Hz

**Dimensions:**

(\(w \times h \times d\))

300 x 165 x 265 mm

Two outputs for parallel connection of two motors

**Integrated irrigation pump:**

Flow: adjustable in 9 steps

* Approx. 4,000 rpm is recommended as this is the most efficient suction/performance ratio.

<table>
<thead>
<tr>
<th>Touch Screen:</th>
<th>UNIDRIVE® S III ENT SCB</th>
<th>UNIDRIVE® S III ECO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.4&quot; / 300 cd/m²</td>
<td></td>
</tr>
</tbody>
</table>

| Weight:                | 5.2 kg                  | 4.7 kg              |
|                       |                         |                     |

| Certified to:          | IEC 601-1 CE acc. to MDD| IEC 60601-1         |
|                       |                         |                     |

| Available languages:   | English, French, German, Spanish, Italian, Portuguese, Greek, Turkish, Polish, Russian | numerical codes |
|                       |                         |                     |
Motor Systems
Special features of high-performance EC micro motor II and of the high-speed micro motor

Special features of high-performance EC micro motor II:
- Self-cooling, brushless high-performance EC micro motor
- Smallest possible dimensions
- Autoclavable
- Reprocessable in a cleaning machine
- Detachable connecting cable

Special features of the high-speed micro motor:
- INTRA coupling for a wide variety of applications
- Maximum torque 4 Ncm
- Number of revolutions continuously adjustable up to 40,000 rpm
- Provided a suitable handle is used, the number of revolutions is continuously adjustable up to 80,000 rpm

High-Performance EC Micro Motor II, for use with UNIDRIVE® II/UNIDRIVE® ENT/OMFS/NEURO/ECO and Connecting Cable 20711033, or for use with UNIDRIVE® S III ENT/ECO/NEURO and Connecting Cable 20711173

Connecting Cable, to connect High-Performance EC Micro Motor 20711033 to UNIDRIVE® S III ENT/ECO/NEURO

High-Speed Micro-Motor, max. speed 60,000 rpm, including connecting cable, for use with UNIDRIVE® S III ENT/NEURO
**UNIDRIVE® S III ENT SCB**

**UNIDRIVE® S III ECO**

Recommended System Configuration

![UNIDRIVE® S III ENT SCB and S III ECO](image)

**40 7016 20-1**  
**UNIDRIVE® S III ENT SCB**, motor control unit with color display, touch screen, two motor outputs, integrated irrigation pump and SCB module, power supply 100 – 240 VAC, 50/60 Hz including:
- **Mains Cord**
- **Irrigator Rod**
- **Two-Pedal Footswitch**, two-stage, with proportional function
- **Silicone Tubing Set**, for irrigation, sterilizable
- **Clip Set**, for use with silicone tubing set
- **SCB Connecting Cable**, length 100 cm
- **Single Use Tubing Set**, sterile, package of 3

**40 7014 01**  
**UNIDRIVE® S III ECO**, motor control unit with two motor outputs and integrated irrigation pump, power supply 100 – 240 VAC, 50/60 Hz including:
- **Mains Cord**
- **Two-Pedal Footswitch**, two-stage, with proportional function
- **Silicone Tubing Set**, for irrigation, sterilizable
- **Clip Set**, for use with silicone tubing set

<table>
<thead>
<tr>
<th>Specifications:</th>
<th>UNIDRIVE® S III ENT SCB: 6.4”/300 cd/m²</th>
<th>Dimensions w x h x d: 300 x 165 x 265 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touch Screen</td>
<td>6.4”/300 cd/m²</td>
<td>300 x 165 x 265 mm</td>
</tr>
<tr>
<td>Flow</td>
<td>9 steps</td>
<td>Weight: 5.2 kg</td>
</tr>
<tr>
<td>Power supply</td>
<td>100-240 VAC, 50/60 Hz</td>
<td>Certified to: EC 601-1, CE acc. to MDD</td>
</tr>
</tbody>
</table>

*mtp medical technical promotion gmbh, Take-Off GewerbePark 46, D-78579 Neuhausen ob Eck, Germany*
### UNIDRIVE® S III ENT SCB, UNIDRIVE® S III ECO

**System Components**

- ** UNIT SIDE**
  - Two-Pedal Footswitch
  - Silicone Tubing Set

- **PATIENT SIDE**
  - High-Speed Micro-Motor
  - High-Performance EC Micro Motor II
  - DrillCut-X II Shaver Handpiece, for use with UNIDRIVE® S III ECO/ENT/NEURO
  - DrillCut-X II N Shaver Handpiece, with adaption possibilities for Shaver Tracker, for use with UNIDRIVE® S III ECO/ENT/NEURO
  - INTRA Drill Handpiece
  - Shaver Blade
  - Shaver Blade, curved
  - Sinus Burr

**System Components**

- High-Speed Handpiece
  - Intranasal Drill
  - Silicone Tubing Set
  - Shaver Blade
  - Shaver Blade, curved
  - Sinus Burr

**Part Numbers**

- 20 0166 30
- 20 7116 40
- 20 710 50
- 20 710 55
- 20 7120 33
- 20 711 03 3
- 20 7111 73
- 40 7120 50
- 40 7120 55
- 252660 – 252692
- 252675 – 252690
- 41201 KN
- 41302 KN
- 41305 DN

---

Basic and Endoscopic Sinus Surgery Techniques – A Laboratory Dissection Manual
## Optional Accessories
for UNIDRIVE® S III ENT SCB and UNIDRIVE® S III ECO

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>280053</td>
<td><strong>Universal Spray</strong>, 6x 500 ml bottles – HAZARDOUS GOODS – UN 1950 including:</td>
</tr>
<tr>
<td></td>
<td><strong>Spray Nozzle</strong></td>
</tr>
<tr>
<td>280053 C</td>
<td><strong>Spray Nozzle</strong>, for the reprocessing of INTRA burr handpieces, for use with Universal Spray 280053 B</td>
</tr>
<tr>
<td>031131-10*</td>
<td><strong>Tubing Set</strong>, for irrigation, for single use, sterile, package of 10</td>
</tr>
</tbody>
</table>

* mtp medical technical promotion gmbh, Take-Off GewerbePark 46, D-78579 Neuhausen ob Eck, Germany
DrillCut-X® Shaver Handpieces

Special Features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>DrillCut-X® II 40 7120 50</th>
<th>DrillCut-X® II N 40 7120 55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. 10,000 rpm for shaver blades, max. 12,000 rpm for sinus shaver</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Straight suction channel</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Integrated irrigation channel</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Powerful motor, also suitable for harder materials</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Absolutely silent running, no vibration</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Completely immersible and machine-washable</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>LOCK allows fixation of shaver blades and sinus shavers</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Extremely lightweight design</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Optional, ergonomic handle, detachable</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Can be adapted to navigation tracker</td>
<td>–</td>
<td>●</td>
</tr>
</tbody>
</table>

**DrillCut-X® II Shaver Handpiece**, for use with UNIDRIVE® S III ECO/ENT/NEURO/OMFS

**DrillCut-X® II N Shaver Handpiece**, optional adaptability to Shaver Tracker 40 8001 22, for use with UNIDRIVE® S III ECO/ENT/NEURO/OMFS
DrillCut-X® II Shaver Handpiece

Special Features:
- Powerful motor
- Absolutely silent running
- Enhanced ergonomics
- Lightweight design
- Oscillation mode for shaver blades, max. 10,000 rpm
- Rotation mode for sinus shavers, max. 12,000 rpm
- Straight suction channel and integrated irrigation

The versatile DrillCut-X® II Shaver Handpiece can be adapted to individual needs of the user
- Easy hygienic processing, suitable for use in washer and autoclavable at 134°C
- Quick coupling mechanism facilitates more rapid exchange of work inserts
- Proven DrillCut-X® blade portfolios can be used

40 7120 50 DrillCut-X® II Shaver Handpiece, for use with UNIDRIVE® S III ECO/ENT/NEURO/OMFS

40 7120 90 Handle, adjustable, for use with DrillCut-X® II 40 7120 50 and DrillCut-X® II N 40 7120 55

Optional Accessory:

41250 RA Cleaning Adaptor, Luer-Lock, for cleaning DrillCut-X® shaver handpieces
DrillCut-X® II Shaver N Handpiece

Special Features:
- Powerful motor
- Absolutely silent running
- Enhanced ergonomics
- Lightweight design
- Oscillation mode for shaver blades, max. 10,000 rpm
- Rotation mode for sinus shavers, max. 12,000 rpm
- Straight suction channel and integrated irrigation
- The versatile DrillCut-X® II Shaver N Shaver Handpiece can be adapted to the individual needs of the user

- Easy hygienic processing, suitable for use in washer and autoclavable at 134° C
- Quick coupling mechanism facilitates more rapid exchange of working inserts
- Proven DrillCut-X® blade portfolios can be used
- Optional adaptability to Shaver Tracker 40 8001 22
- Allows shaver navigation when used with NPU 40 8000 01

40 7120 55  DrillCut-X® II N Shaver Handpiece, optional adaptability to Shaver Tracker 40 8001 22, for use with UNIDRIVE® S III ECO/ENT/NEURO/OMFS

40 7120 90  Handle, adjustable, for use with DrillCut-X® II 40 7120 50 and DrillCut-X® II N 40 7120 55

Optional Accessory:

41250 RA  Cleaning Adaptor, LUER-Lock, for cleaning DrillCut-X® shaver handpieces
Handle for DrillCut-X® II Shaver Handpiece
for use with DrillCut-X® II 40 7120 50 and DrillCut-X® II N 40 7120 55

Special Features:
- Ergonomic design
- Ultralight construction
- Easy handle control allows individual adjustment
- The adjustable handle can be mounted to DrillCut-X® II or -X II N Shaver Handpiece
- Easy fixation via rotary lock
- Sterilizable

40 7120 90 Handle, adjustable, for use with DrillCut-X® II 40 7120 50 and DrillCut-X® II N 40 7120 55
Shaver Blades, straight
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

Shaver Blades, straight, sterilizable

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Shaver Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40 7120 50</td>
<td>serrated cutting edge, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td></td>
<td>40 7120 55</td>
<td>double serrated cutting edge, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41201 GN</td>
<td>concave cutting edge, oval cutting window, diameter 4 mm, color code: blue-green</td>
</tr>
<tr>
<td></td>
<td>41201 LN</td>
<td>concave cutting edge, oblique cutting window, diameter 4 mm, color code: blue-black</td>
</tr>
<tr>
<td></td>
<td>41201 SN</td>
<td>straight cutting edge, diameter 4 mm, color code: blue-blue</td>
</tr>
<tr>
<td></td>
<td>41201 KSA</td>
<td>serrated cutting edge, diameter 3 mm, color code: blue-red</td>
</tr>
<tr>
<td></td>
<td>41201 KKSA</td>
<td>double serrated cutting edge, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41201 KKSB</td>
<td>double serrated cutting edge, diameter 2 mm, color code: blue-green</td>
</tr>
<tr>
<td></td>
<td>41201 LSA</td>
<td>concave cutting edge, oblique cutting window, diameter 3 mm, color code: blue-black</td>
</tr>
</tbody>
</table>

Optional Accessory:

41200 RA    Cleaning Adaptor, LUER-Lock, for cleaning the inner and outer blades of reusable Shaver Blades 412xx
Shaver Blades, curved
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Shaver Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40712050 DrillCut-X® II Handpiece</td>
<td>curved 35°, cutting edge serrated backwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td></td>
<td>40712055 DrillCut-X® II N Handpiece</td>
<td>curved 40°, cutting edge serrated forwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41202 KN</td>
<td>curved 40°, cutting edge serrated backwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41204 KKF</td>
<td>curved 40°, cutting edge serrated forwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41204 KKB</td>
<td>curved 40°, cutting edge serrated backwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41204 KKFA</td>
<td>curved 40°, cutting edge serrated forwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td></td>
<td>41204 KKBA</td>
<td>curved 40°, cutting edge serrated backwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
</tbody>
</table>

Optional Accessory:

<table>
<thead>
<tr>
<th>Detail</th>
<th>Cleaning Adaptor, LUER-Lock, for cleaning the inner and outer blades of reusable Shaver Blades 412xx</th>
</tr>
</thead>
</table>
**Shaver Blades, curved**

for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

![Image of Shaver Blade](image)

### Shaver Blades, curved 65°, sterilizable

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Shaver Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>41203 KNF</td>
<td><strong>DrillCut-X® II Handpiece</strong>&lt;br&gt;<strong>DrillCut-X® II N Handpiece</strong></td>
<td>curved 65°, cutting edge serrated forwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td>41203 KNB</td>
<td></td>
<td>curved 65°, cutting edge serrated backwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td>41203 KKF</td>
<td></td>
<td>curved 65°, cutting edge serrated forwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41203 KKB</td>
<td></td>
<td>curved 65°, cutting edge serrated backwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41203 KKFA</td>
<td></td>
<td>curved 65°, cutting edge serrated forwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41203 KKBA</td>
<td></td>
<td>curved 65°, cutting edge serrated backwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41203 GNF</td>
<td></td>
<td>curved 65°, concave cutting edge, oval cutting window, forward opening, diameter 4 mm, color code: blue-green</td>
</tr>
<tr>
<td>41203 GNB</td>
<td></td>
<td>curved 65°, concave cutting edge, oval cutting window, backward opening, diameter 4 mm, color code: blue-green</td>
</tr>
</tbody>
</table>

**Optional Accessory:**

41200 RA **Cleaning Adaptor**, LUER-Lock, for cleaning the inner and outer blades of reusable Shaver Blades 412xx
Shaver Blades, straight
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

![Diagram of Shaver Blade](image)

<table>
<thead>
<tr>
<th>Shaver Blades, straight, <strong>for single use</strong>, sterile, package of 5</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Detail</strong></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Shaver Blades, curved
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X° II and DrillCut-X° II N

Shaver Blades, curved 35°/40°, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Shaver Blade length 12 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40712050 DrillCut-X° II Handpiece</td>
<td>curved 35°, cutting edge serrated backwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td>41302 KN</td>
<td>40712055 DrillCut-X° II N Handpiece</td>
<td></td>
</tr>
<tr>
<td>41304 KKF</td>
<td></td>
<td>curved 40°, cutting edge serrated forwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41304 KKB</td>
<td></td>
<td>curved 40°, cutting edge serrated backwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41304 KKFA</td>
<td></td>
<td>curved 40°, cutting edge serrated forwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td>41304 KKBA</td>
<td></td>
<td>curved 40°, cutting edge serrated backwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
</tbody>
</table>
Shaver Blades, curved
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Shaver Blade</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1.png" alt="Image" /></td>
<td>41303 KNF</td>
<td>curved 65°, cutting edge serrated forwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td><img src="image2.png" alt="Image" /></td>
<td>41303 KNB</td>
<td>curved 65°, cutting edge serrated backwards, diameter 4 mm, color code: blue-red</td>
</tr>
<tr>
<td><img src="image3.png" alt="Image" /></td>
<td>41303 KKF</td>
<td>curved 65°, cutting edge serrated forwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td><img src="image4.png" alt="Image" /></td>
<td>41303 KKB</td>
<td>curved 65°, cutting edge serrated backwards, double serrated, diameter 4 mm, color code: blue-yellow</td>
</tr>
<tr>
<td><img src="image5.png" alt="Image" /></td>
<td>41303 KKFA</td>
<td>curved 65°, cutting edge serrated forwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td><img src="image6.png" alt="Image" /></td>
<td>41303 KKBA</td>
<td>curved 65°, cutting edge serrated backwards, double serrated, diameter 3 mm, color code: blue-yellow</td>
</tr>
<tr>
<td><img src="image7.png" alt="Image" /></td>
<td>41303 GNF</td>
<td>curved 65°, cutting edge concave forwards, oval cutting window, diameter 4 mm, color code: blue-green</td>
</tr>
<tr>
<td><img src="image8.png" alt="Image" /></td>
<td>41303 GNB</td>
<td>curved 65°, cutting edge concave backwards, oval cutting window, diameter 4 mm, color code: blue-green</td>
</tr>
</tbody>
</table>
Sinus Burrs, curved
for Nasal Sinuses and Skull Base Surgery

For use with DrillCut-X® II and DrillCut-X® II N

Sinus Burrs, curved 70°/55°/40°/15°, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Detail</th>
<th>for use with</th>
<th>Sinus Burr length 12 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>41304 W</td>
<td>40 712050 DrillCut-X® II Handpiece</td>
<td>curved 40°, cylindric, drill diameter 3 mm, shaft diameter 4 mm, color code: red-blue</td>
</tr>
<tr>
<td>41303 WN</td>
<td>40 712055 DrillCut-X® II N Handpiece</td>
<td>curved 55°, cylindric, drill diameter 3.6 mm, shaft diameter 4 mm, color code: red-blue</td>
</tr>
<tr>
<td>41305 RN</td>
<td></td>
<td>curved 15°, bud drill, drill diameter 4 mm, shaft diameter 4 mm, color code: red-black</td>
</tr>
<tr>
<td>41305 DN</td>
<td></td>
<td>curved 15°, diamond head, drill diameter 3 mm, shaft diameter 4 mm, color code: red-yellow</td>
</tr>
<tr>
<td>41305 D</td>
<td></td>
<td>curved 15°, diamond head, drill diameter 5 mm, shaft diameter 4 mm, color code: red-yellow</td>
</tr>
<tr>
<td>41305 DW</td>
<td></td>
<td>curved 40°, diamond head, drill diameter 5 mm, shaft diameter 4 mm, color code: red-yellow</td>
</tr>
<tr>
<td>41303 DT</td>
<td></td>
<td>curved 70°, diamond head, drill diameter 3.6 mm, shaft diameter 4 mm, color code: red-yellow</td>
</tr>
</tbody>
</table>
Accessories for Shaver

39550 A \textbf{Wire Tray}, provides safe storage of accessories for KARL STORZ paranasal sinus shaver systems during cleaning and sterilization 

\textbf{for storage of:}
- Up to 7 shaver attachments
- Connecting cable

\textbf{Please note:} The instruments displayed are not included in the sterilizing and storage tray.
INTRA Drill Handpiece
for Surgery in Ethmoid and Skull Base Area

Special Features:
- Tool-free closing and opening of the drill
- Right/left rotation
- Max. rotating speed up to 40,000 rpm / 80,000 U/min
- Detachable irrigation channels
- Lightweight construction
- Operates with little vibrations
- Low maintenance
- Reprocessable in a cleaning machine
- Safe grip

INTRA Drill Handpiece, angled, length 15 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and burrs

INTRA Drill Handpiece, straight, length 13 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and burrs

<table>
<thead>
<tr>
<th>Detail</th>
<th>Size</th>
<th>Dia. mm</th>
<th>Standard</th>
<th>Diamond</th>
<th>Diamond coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>014</td>
<td>1.4</td>
<td>649614</td>
<td>649714</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>018</td>
<td>1.8</td>
<td>649618</td>
<td>649718</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>023</td>
<td>2.3</td>
<td>649623</td>
<td>649723</td>
<td>649723 G</td>
</tr>
<tr>
<td></td>
<td>027</td>
<td>2.7</td>
<td>649627</td>
<td>649727</td>
<td>649727 G</td>
</tr>
<tr>
<td></td>
<td>031</td>
<td>3.1</td>
<td>649631</td>
<td>649731</td>
<td>649731 G</td>
</tr>
<tr>
<td></td>
<td>035</td>
<td>3.5</td>
<td>649635</td>
<td>649735</td>
<td>649735 G</td>
</tr>
<tr>
<td></td>
<td>040</td>
<td>4</td>
<td>649640</td>
<td>649740</td>
<td>649740 G</td>
</tr>
<tr>
<td></td>
<td>045</td>
<td>4.5</td>
<td>649645</td>
<td>649745</td>
<td>649745 G</td>
</tr>
<tr>
<td></td>
<td>050</td>
<td>5</td>
<td>649650</td>
<td>649750</td>
<td>649750 G</td>
</tr>
<tr>
<td></td>
<td>060</td>
<td>6</td>
<td>649660</td>
<td>649760</td>
<td>649760 G</td>
</tr>
<tr>
<td></td>
<td>070</td>
<td>7</td>
<td>649670</td>
<td>649770</td>
<td>649770 G</td>
</tr>
</tbody>
</table>

649600 Standard Straight Shaft Burr, stainless, size 014 – 070, length 9.5 cm, set of 11
649700 Diamond Straight Shaft Burr, stainless, size 014 – 070, length 9.5 cm, set of 11
649700 G Rapid Diamond Straight Shaft Burr, stainless, with coarse diamond coating for precise drilling and abrasion without hand pressure and generating minimal heat, size 023 – 070, length 9.5 cm, set of 9, color code: gold
280033 Rack, for 36 straight shaft burrs with a length of 9.5 cm, foldable, sterilizable, size 22 x 14 x 2 cm
INTRA Drill Handpiece
for Surgery in Ethmoid and Skull Base Area

Special Features:
- Tool-free closing and opening of the drill
- Right/left rotation
- Max. rotating speed up to 40,000 rpm/80,000 U/min
- Detachable irrigation channels
- Lightweight construction
- Operates with little vibrations
- Low maintenance
- Reprocessable in a cleaning machine
- Safe grip

INTRA Drill Handpiece, angled, length 18 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and burrs

INTRA Drill Handpiece, straight, length 17 cm, transmission 1:1 (40,000 rpm), for use with KARL STORZ high-performance EC micro motor II and burrs

649600 L – 649770 GL

<table>
<thead>
<tr>
<th>Detail</th>
<th>Size</th>
<th>Dia. mm</th>
<th>Standard</th>
<th>Diamond</th>
<th>Diamond coarse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>sterilizable</td>
<td>sterilizable</td>
<td>sterilizable</td>
</tr>
<tr>
<td>014</td>
<td>1.4</td>
<td>649614 L</td>
<td>649714 L</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>1.8</td>
<td>649618 L</td>
<td>649718 L</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>2.3</td>
<td>649623 L</td>
<td>649723 L</td>
<td>649723 GL</td>
<td></td>
</tr>
<tr>
<td>027</td>
<td>2.7</td>
<td>649627 L</td>
<td>649727 L</td>
<td>649727 GL</td>
<td></td>
</tr>
<tr>
<td>031</td>
<td>3.1</td>
<td>649631 L</td>
<td>649731 L</td>
<td>649731 GL</td>
<td></td>
</tr>
<tr>
<td>035</td>
<td>3.5</td>
<td>649635 L</td>
<td>649735 L</td>
<td>649735 GL</td>
<td></td>
</tr>
<tr>
<td>040</td>
<td>4</td>
<td>649640 L</td>
<td>649740 L</td>
<td>649740 GL</td>
<td></td>
</tr>
<tr>
<td>045</td>
<td>4.5</td>
<td>649645 L</td>
<td>649745 L</td>
<td>649745 GL</td>
<td></td>
</tr>
<tr>
<td>050</td>
<td>5</td>
<td>649650 L</td>
<td>649750 L</td>
<td>649750 GL</td>
<td></td>
</tr>
<tr>
<td>060</td>
<td>6</td>
<td>649660 L</td>
<td>649760 L</td>
<td>649760 GL</td>
<td></td>
</tr>
<tr>
<td>070</td>
<td>7</td>
<td>649670 L</td>
<td>649770 L</td>
<td>649770 GL</td>
<td></td>
</tr>
</tbody>
</table>

649600 L  Standard Straight Shaft Burr, stainless, size 014 – 070, length 12.5 cm, set of 11
649700 L  Diamond Straight Shaft Burr, stainless, size 014 – 070, length 12.5 cm, set of 11
649700 GL Rapid Diamond Straight Shaft Burr, stainless, with coarse diamond coating for precise drilling and abrasion without hand pressure and generating minimal heat, sizes 023 – 070, length 12.5 cm, set of 9, color code: gold
280034  Rack, for 36 straight shaft burrs with a length of 12.5 cm, foldable, sterilizable, size 22 x 17 x 2 cm
Accessories for Burrs

280033  **Rack**, for 36 straight shaft burrs with a length of 9.5 cm, foldable, sterilizable, size 22 x 14 x 2 cm

280034  **Rack**, for 36 straight shaft burrs with a length of 12.5 cm, foldable, sterilizable, size 22 x 17 x 2 cm

NEW 280043  **Rack**, flat model, to hold 21 straight shaft burrs with a length of 7 cm (6 pcs) and 9.5 cm (15 pcs), folding model, sterilizable, size 17.5 x 11.5 x 1.2 cm

*Please note:* The burrs displayed are not included in the racks.
Accessories for Burrs

39552 A  **Wire Tray**, provides safe storage of accessories for KARL STORZ drilling/grinding systems during cleaning and sterilization, includes tray for small parts, for use with Rack 280030, rack **not included**

for storage of:
– Up to 6 drill handpieces
– Connecting cable
– EC micro motor
– Small parts

39552 B  **Wire Tray**, provides safe storage of accessories for KARL STORZ drilling/grinding systems during cleaning and sterilization, includes tray for small parts, for use with Rack 280030, rack **included**

for storage of:
– Up to 6 drill handpieces
– Connecting cable
– EC micro motor
– Up to 36 drill bits and burrs
– Small parts

Please note: The instruments displayed are not included in the sterilizing and storage tray.
UNIDRIVE® S III ENT SCB
High-Speed Handpieces, angled, 100,000 rpm

For use with High-Speed Drills, shaft diameter 3.17 mm and with High-Speed Micro Motor 20712033

100,000 rpm
100,000 rpm
diameter 7.5 mm
diameter 7.5 mm

20712033

252681

53 mm
7.5 mm

252682

93 mm
7.5 mm

252681 High-Speed Handpiece, medium, angled, 100,000 rpm, for use with High-Speed Micro-Motor 20712033

252682 High-Speed Handpiece, long, angled, 100,000 rpm, for use with High-Speed Micro-Motor 20712033
UNIDRIVE® S III ENT SCB
High-Speed Handpieces, angled, 60,000 rpm

For use with High-Speed Drills, shaft diameter 2.35 mm and with High-Speed Micro Motor 20 7120 33

252661  High-Speed Handpiece, short, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33
252662  High-Speed Handpiece, medium, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33
252663  High-Speed Handpiece, long, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33
UNIDRIVE® S III ENT SCB
High-Speed Handpieces, straight, 60,000 rpm

For use with High-Speed Drills, shaft diameter 2.35 mm and with High-Speed Micro Motor 20 7120 33

252691  High-Speed Handpiece, short, straight, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33

252692  High-Speed Handpiece, medium, straight, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33
UNIDRIVE® S III ENT SCB
High-Speed Handpieces, malleable, slim, angled, 60,000 rpm

For use with High-Speed Drills, shaft diameter 1 mm and with High-Speed Micro Motor 20 7120 33

The handpieces have malleable shafts that can be bent up to 20° according to user requirements.

252671 High-Speed Handpiece, extra long, malleable, slim, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33

252672 High-Speed Handpiece, super long, malleable, slim, angled, 60,000 rpm, for use with High-Speed Micro-Motor 20 7120 33
**UNIDRIVE® S III ENT SCB**  
High-Speed Standard Burrs, High-Speed Diamond Burrs

For use with High-Speed Handpieces, 100,000 rpm

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>medium</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350110 M</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>350120 M</td>
<td>350120 L</td>
</tr>
<tr>
<td>3</td>
<td>350130 M</td>
<td>350130 L</td>
</tr>
<tr>
<td>4</td>
<td>350140 M</td>
<td>350140 L</td>
</tr>
<tr>
<td>5</td>
<td>350150 M</td>
<td>350150 L</td>
</tr>
<tr>
<td>6</td>
<td>350160 M</td>
<td>350160 L</td>
</tr>
<tr>
<td>7</td>
<td>350170 M</td>
<td>350170 L</td>
</tr>
</tbody>
</table>

High-Speed Diamond Burrs, 100,000 rpm, for single use, sterile, package of 5

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>medium</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>350210 M</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>350220 M</td>
<td>350220 L</td>
</tr>
<tr>
<td>3</td>
<td>350230 M</td>
<td>350230 L</td>
</tr>
<tr>
<td>4</td>
<td>350240 M</td>
<td>350240 L</td>
</tr>
<tr>
<td>5</td>
<td>350250 M</td>
<td>350250 L</td>
</tr>
<tr>
<td>6</td>
<td>350260 M</td>
<td>350260 L</td>
</tr>
<tr>
<td>7</td>
<td>350270 M</td>
<td>350270 L</td>
</tr>
</tbody>
</table>
**UNIDRIVE® S III ENT SCB**

High-Speed Diamond Burrs, High-Speed Acorn,
High-Speed Barrel Burrs, High-Speed Neuro Fluted Burrs

For use with High-Speed Handpieces, 100,000 rpm

![Images of Diamond Burrs and Acorns]

| High-Speed Coarse Diamond Burrs, 100,000 rpm, for single use, sterile, package of 5 |
|----------------------------------|--------|--------|
| Diameter in mm | medium | long |
| 3 | 350330 M | 350330 L |
| 4 | 350340 M | 350340 L |
| 5 | 350350 M | 350350 L |
| 6 | 350360 M | 350360 L |
| 7 | 350370 M | 350370 L |

| High-Speed Acorn, 100,000 rpm, for single use, sterile, package of 5 |
|----------------------------------|--------|
| Diameter in mm | medium |
| 7.5 | 350675 M |
| 9 | 350690 M |

| High-Speed Barrel Burrs, 100,000 rpm, for single use, sterile, package of 5 |
|----------------------------------|--------|
| Diameter in mm | medium |
| 6 | 350960 M |
| 9.1 | 350991 M |

| High-Speed Neuro Fluted Burrs, 100,000 rpm, for single use, sterile, package of 5 |
|----------------------------------|--------|--------|
| Diameter in mm | medium | long |
| 1.8 | 350718 M | 350718 L |
| 3 | 350730 M | 350730 L |
UNIDRIVE® S III ENT SCB
High-Speed Standard Burrs, High-Speed Diamond Burrs

For use with High-Speed Handpieces, 60,000 rpm

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>330110 S</td>
<td>330110 M</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>330120 S</td>
<td>330120 M</td>
<td>330120 L</td>
</tr>
<tr>
<td>3</td>
<td>330130 S</td>
<td>330130 M</td>
<td>330130 L</td>
</tr>
<tr>
<td>4</td>
<td>330140 S</td>
<td>330140 M</td>
<td>330140 L</td>
</tr>
<tr>
<td>5</td>
<td>330150 S</td>
<td>330150 M</td>
<td>330150 L</td>
</tr>
<tr>
<td>6</td>
<td>330160 S</td>
<td>330160 M</td>
<td>330160 L</td>
</tr>
<tr>
<td>7</td>
<td>330170 S</td>
<td>330170 M</td>
<td>330170 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>330206 S</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>1</td>
<td>330210 S</td>
<td>330210 M</td>
<td>–</td>
</tr>
<tr>
<td>1.5</td>
<td>330215 S</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>330220 S</td>
<td>330220 M</td>
<td>330220 L</td>
</tr>
<tr>
<td>3</td>
<td>330230 S</td>
<td>330230 M</td>
<td>330230 L</td>
</tr>
<tr>
<td>4</td>
<td>330240 S</td>
<td>330240 M</td>
<td>330240 L</td>
</tr>
<tr>
<td>5</td>
<td>330250 S</td>
<td>330250 M</td>
<td>330250 L</td>
</tr>
<tr>
<td>6</td>
<td>330260 S</td>
<td>330260 M</td>
<td>330260 L</td>
</tr>
<tr>
<td>7</td>
<td>330270 S</td>
<td>330270 M</td>
<td>330270 L</td>
</tr>
</tbody>
</table>
**UNIDRIVE® S III ENT SCB**

**High-Speed Diamond Burrs, High-Speed Cylinder Burrs, LINDEMANN High-Speed Fluted Burrs**

For use with High-Speed Handpieces, 60,000 rpm

![Image of burrs]

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
<th>medium</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>330330 S</td>
<td>330330 M</td>
<td>330330 L</td>
</tr>
<tr>
<td>4</td>
<td>330340 S</td>
<td>330340 M</td>
<td>330340 L</td>
</tr>
<tr>
<td>5</td>
<td>330350 S</td>
<td>330350 M</td>
<td>330350 L</td>
</tr>
<tr>
<td>6</td>
<td>330360 S</td>
<td>330360 M</td>
<td>330360 L</td>
</tr>
<tr>
<td>7</td>
<td>330370 S</td>
<td>330370 M</td>
<td>330370 L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>330440 S</td>
</tr>
<tr>
<td>6</td>
<td>330460 S</td>
</tr>
</tbody>
</table>

**LINDEMANN High-Speed Fluted Burrs, 60,000 rpm, for single use, sterile, package of 5**

<table>
<thead>
<tr>
<th>Size in mm (diameter x length)</th>
<th>short</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter 2.1/11</td>
<td>330511 S</td>
</tr>
<tr>
<td>Diameter 2.3/26</td>
<td>330526 S</td>
</tr>
</tbody>
</table>
### UNIDRIVE® S III ENT SCB

**High-Speed Diamond Burrs**

For use with High-Speed Handpieces, 60,000 rpm

![Diamond Burrs](Image)

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra long</th>
<th>super long</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>320220 EL</td>
<td>320220 SL</td>
</tr>
<tr>
<td>3</td>
<td>320230 EL</td>
<td>320230 SL</td>
</tr>
<tr>
<td>4</td>
<td>320240 EL</td>
<td>320240 SL</td>
</tr>
</tbody>
</table>

**High-Speed Coarse Diamond Burrs, 60,000 rpm, for single use, sterile, package of 5**

<table>
<thead>
<tr>
<th>Diameter in mm</th>
<th>extra long</th>
<th>super long</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>320320 EL</td>
<td>320320 SL</td>
</tr>
<tr>
<td>3</td>
<td>320330 EL</td>
<td>320330 SL</td>
</tr>
<tr>
<td>4</td>
<td>320340 EL</td>
<td>320340 SL</td>
</tr>
</tbody>
</table>
IMAGE1 S Camera System \textit{NEW}

### Innovative Design
- **Dashboard:** Complete overview with intuitive menu guidance
- **Live menu:** User-friendly and customizable
- **Intelligent icons:** Graphic representation changes when settings of connected devices or the entire system are adjusted

### Economical and future-proof
- Modular concept for flexible, rigid and 3D endoscopy as well as new technologies
- Forward and backward compatibility with video endoscopes and FULL HD camera heads

### Sustainable investment
- Automatic light source control
- Side-by-side view: Parallel display of standard image and the Visualization mode
- Multiple source control: IMAGE1 S allows the simultaneous display, processing and documentation of image information from two connected image sources, e.g., for hybrid operations
Brillant Imaging
• Clear and razor-sharp endoscopic images in FULL HD
• Natural color rendition

Reflection is minimized
• Multiple IMAGE1 S technologies for homogeneous illumination, contrast enhancement and color shifting

FULL HD image

CLARA

FULL HD image

CHROMA

FULL HD image

SPECTRA A*

FULL HD image

SPECTRA B**

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.
TC 200EN

**IMAGE1 S CONNECT**, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

- **Mains Cord**, length 300 cm
- **DVI-D Connecting Cable**, length 300 cm
- **SCB Connecting Cable**, length 100 cm
- **USB Flash Drive**, 32 GB, USB silicone keyboard, with touchpad, US

*Available in the following languages:* DE, ES, FR, IT, PT, RU

**Specifications:**

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 200EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD video outputs</td>
<td>- 2x DVI-D</td>
</tr>
<tr>
<td></td>
<td>- 1x 3G-SDI</td>
</tr>
<tr>
<td>Format signal outputs</td>
<td>1920 x 1080p, 50/60 Hz</td>
</tr>
<tr>
<td>LINK video inputs</td>
<td>3x</td>
</tr>
<tr>
<td>USB interface</td>
<td>4x USB, (2x front, 2x rear)</td>
</tr>
<tr>
<td>SCB interface</td>
<td>2x 6-pin mini-DIN</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>2.1 kg</td>
</tr>
</tbody>
</table>

**For use with IMAGE1 S**

**IMAGE1 S CONNECT Module TC 200EN**

TC 300

**IMAGE1 S H3-LINK**, link module, for use with IMAGE1 FULL HD three-chip camera heads, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with **IMAGE1 S CONNECT TC 200EN** including:

- **Mains Cord**, length 300 cm
- **Link Cable**, length 20 cm

**Specifications:**

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 300 (H3-Link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported camera heads/video endoscopes</td>
<td>TH 100, TH 101, TH 102, TH 103, TH 104, TH 106 (fully compatible with IMAGE1 S)</td>
</tr>
<tr>
<td></td>
<td>22220055-3, 22220056-3, 22220053-3, 22220060-3, 22220061-3, 22220054-3, 22220085-3 (compatible without IMAGE1 S technologies CLARA, CHROMA, SPECTRA*)</td>
</tr>
<tr>
<td>LINK video outputs</td>
<td>1x</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.86 kg</td>
</tr>
</tbody>
</table>

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.
For use with IMAGE1 S Camera System
IMAGE1 S CONNECT Module TC 200EN, IMAGE1 S H3-LINK Module TC 300 and with all IMAGE1 HUB™ HD Camera Control Units

**TH 100**

**IMAGE1 S H3-Z Three-Chip FULL HD Camera Head**, 50/60 Hz, IMAGE1 S compatible, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length \( f = 15\text{–}31 \text{ mm} \) (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

**Specifications:**

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3” CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>270 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, ( f = 15\text{–}31 \text{ mm} ) (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

**TH 104**

**IMAGE1 S H3-ZA Three-Chip FULL HD Camera Head**, 50/60 Hz, IMAGE1 S compatible, [autoclavable](#), progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length \( f = 15\text{–}31 \text{ mm} \) (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

**Specifications:**

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 104</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3” CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, ( f = 15\text{–}31 \text{ mm} ) (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Monitors

9619 NB

19" HD Monitor,
color systems PAL/NTSC, max. screen resolution 1280 x 1024, image format 4:3, power supply 100–240 VAC, 50/60 Hz, wall-mounted with VESA 100 adaption, including:
External 24 VDC Power Supply
Mains Cord

9826 NB

26" FULL HD Monitor,
wall-mounted with VESA 100 adaption, color systems PAL/NTSC, max. screen resolution 1920 x 1080, image format 16:9, power supply 100–240 VAC, 50/60 Hz including:
External 24 VDC Power Supply
Mains Cord
## Monitors

<table>
<thead>
<tr>
<th>KARL STORZ HD and FULL HD Monitors</th>
<th>19&quot;</th>
<th>26&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-mounted with VESA 100 adaption</td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
</tbody>
</table>

### Inputs:

<table>
<thead>
<tr>
<th>Type</th>
<th>19&quot;</th>
<th>26&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fibre Optic</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3G-SDI</td>
<td>–</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

### Outputs:

<table>
<thead>
<tr>
<th>Type</th>
<th>19&quot;</th>
<th>26&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>–</td>
</tr>
<tr>
<td>3G-SDI</td>
<td>–</td>
<td>●</td>
</tr>
</tbody>
</table>

### Signal Format Display:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:3</td>
<td>●</td>
</tr>
<tr>
<td>5:4</td>
<td>●</td>
</tr>
<tr>
<td>16:9</td>
<td>●</td>
</tr>
<tr>
<td>Picture-in-Picture</td>
<td>●</td>
</tr>
<tr>
<td>PAL/NTSC compatible</td>
<td>●</td>
</tr>
</tbody>
</table>

### Optional accessories:

- 9826 SF **Pedestal**, for monitor 9826 NB
- 9626 SF **Pedestal**, for monitor 9619 NB

### Specifications:

<table>
<thead>
<tr>
<th>KARL STORZ HD and FULL HD Monitors</th>
<th>19&quot;</th>
<th>26&quot;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop with pedestal</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>Product no.</td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
<tr>
<td>Brightness</td>
<td>200 cd/m² (typ)</td>
<td>500 cd/m² (typ)</td>
</tr>
<tr>
<td>Max. viewing angle</td>
<td>178° vertical</td>
<td>178° vertical</td>
</tr>
<tr>
<td>Pixel distance</td>
<td>0.29 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Reaction time</td>
<td>5 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>700:1</td>
<td>1400:1</td>
</tr>
<tr>
<td>Mount</td>
<td>100 mm VESA</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Weight</td>
<td>7.6 kg</td>
<td>7.7 kg</td>
</tr>
<tr>
<td>Rated power</td>
<td>28 W</td>
<td>72 W</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0–40°C</td>
<td>5–35°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-20–60°C</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Rel. humidity</td>
<td>max. 85%</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>469.5 x 416 x 75.5 mm</td>
<td>643 x 396 x 87 mm</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Certified to</td>
<td>EN 60601-1, protection class IPX0</td>
<td>EN 60601-1, UL 60601-1, MDD03/42/EEC, protection class IPX2</td>
</tr>
</tbody>
</table>
Cold Light Fountains and Accessories

495 NT  Fiber Optic Light Cable, with straight connector, diameter 2.5 mm, length 180 cm
495 NTW  Same, with 90° deflection to the light source
495 NTX  Same, length 230 cm
495 NL  Fiber Optic Light Cable, with straight connector, diameter 3.5 mm, length 180 cm
495 NA  Same, length 230 cm
495 NAC  Fiber Optic Light Cable, with safety locking device, extremely heat-resistant, diameter 3.5 mm, length 230 cm

LED NOVA® 150, High-Performance LED Cold Light Fountain

20161201  LED Nova 150, High-Performance LED Cold Light Fountain with one KARL STORZ light outlet, power supply 100 – 240 VAC, 50/60 Hz including:
Mains cord

Cold Light Fountain Power LED 175 SCB

20161401-1  Cold Light Fountain Power LED 175 SCB, with integrated SCB, high-performance LED and one KARL STORZ light outlet, power supply 110–240 VAC, 50/60 Hz including:
Cold Light Fountain Power LED Mains Cord
SCB Connecting Cable, length 100 cm
20132026  Xenon-Spare-Lamp, 175 watt, 15 volt

Cold Light Fountain XENON 300 SCB

20133101-1  Cold Light Fountain XENON 300 SCB with built-in antifog air-pump, and integrated KARL STORZ Communication Bus System SCB power supply: 100–125 VAC/220–240 VAC, 50/60 Hz including:
Mains Cord
SCB Connecting Cable, length 100 cm
20133027  Spare Lamp Module XENON with heat sink, 300 watt, 15 volt
20133028  XENON Spare Lamp, only, 300 watt, 15 volt
Data Management and Documentation
KARL STORZ AIDA® – Exceptional documentation

The name AIDA stands for the comprehensive implementation of all documentation requirements arising in surgical procedures: A tailored solution that flexibly adapts to the needs of every specialty and thereby allows for the greatest degree of customization.

This customization is achieved in accordance with existing clinical standards to guarantee a reliable and safe solution. Proven functionalities merge with the latest trends and developments in medicine to create a fully new documentation experience – AIDA.

AIDA seamlessly integrates into existing infrastructures and exchanges data with other systems using common standard interfaces.

WD 200-XX*  AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, power supply 100-240 VAC, 50/60 Hz including: USB Silicone Keyboard, with touchpad ACC Connecting Cable DVI Connecting Cable, length 200 cm HDMI-DVI Cable, length 200 cm Mains Cord, length 300 cm

WD 250-XX*  AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, including SMARTSCREEN® (touch screen), power supply 100-240 VAC, 50/60 Hz including: USB Silicone Keyboard, with touchpad ACC Connecting Cable DVI Connecting Cable, length 200 cm HDMI-DVI Cable, length 200 cm Mains Cord, length 300 cm

*XX Please indicate the relevant country code (DE, EN, ES, FR, IT, PT, RU) when placing your order.
Workflow-oriented use

**Patient**
Entering patient data has never been this easy. AIDA seamlessly integrates into the existing infrastructure such as HIS and PACS. Data can be entered manually or via a DICOM worklist. All important patient information is just a click away.

**Checklist**
Central administration and documentation of time-out. The checklist simplifies the documentation of all critical steps in accordance with clinical standards. All checklists can be adapted to individual needs for sustainably increasing patient safety.

**Record**
High-quality documentation, with still images and videos being recorded in FULL HD and 3D. The Dual Capture function allows for the parallel (synchronous or independent) recording of two sources. All recorded media can be marked for further processing with just one click.

**Edit**
With the Edit module, simple adjustments to recorded still images and videos can be very rapidly completed. Recordings can be quickly optimized and then directly placed in the report. In addition, freeze frames can be cut out of videos and edited and saved. Existing markings from the Record module can be used for quick selection.

**Complete**
Completing a procedure has never been easier. AIDA offers a large selection of storage locations. The data exported to each storage location can be defined. The Intelligent Export Manager (IEM) then carries out the export in the background. To prevent data loss, the system keeps the data until they have been successfully exported.

**Reference**
All important patient information is always available and easy to access. Completed procedures including all information, still images, videos, and the checklist report can be easily retrieved from the Reference module.
Equipment Cart

**Equipment Cart**
- wide, high, rides on 4 antistatic dual wheels
- equipped with locking brakes
- 3 shelves
- mains switch on top cover
- central beam with integrated electrical subdistributors
- with 12 sockets, holder for power supplies
- potential earth connectors and cable winding on the outside

**Dimensions:**
- Equipment cart: 830 x 1474 x 730 mm (w x h x d)
- shelf: 630 x 510 mm (w x d)
- caster diameter: 150 mm

**Including:**
- Base module equipment cart, wide
- Cover equipment, equipment cart wide
- Beam package equipment, equipment cart high
- 3x Shelf, wide
- Drawer unit with lock, wide
- 2x Equipment rail, long
- Camera holder

**Monitor Swivel Arm,**
- height and side adjustable
- can be turned to the left or the right side
- swivel range 180°, overhang 780 mm
- overhang from centre 1170 mm
- load capacity max. 15 kg
- with monitor fixation VESA 5/100
- for usage with equipment carts UG xxx
Recommended Accessories for Equipment Cart

**Isolation Transformer**, 200 V–240 V; 2000 VA with 3 special mains socket, expulsion fuses, 3 grounding plugs, dimensions: 330 x 90 x 495 mm (w x h x d), for usage with equipment carts UG xxx

**Earth Leakage Monitor**, 200 V–240 V, for mounting at equipment cart, control panel dimensions: 44 x 80 x 29 mm (w x h x d), for usage with isolation transformer UG 310

**Monitor Holding Arm**, height adjustable, inclinable, mountable on left or right, turning radius approx. 320°, overhang 530 mm, load capacity max. 15 kg, monitor fixation VESA 75/100, for usage with equipment carts UG xxx
with the compliments of

KARL STORZ — ENDOSKOPE