LAPAROSCOPIC REPAIR OF INCISIONAL HERNIAS

Martin BSCHOR
Maik SAHM
Matthias PROSS
Table of Contents

1.0 Introduction ... 6

2.0 Epidemiology of Incisional Hernias ... 6

3.0 Etiology and Pathogenesis of Incisional Hernias .. 7

4.0 Conventional Repair Techniques .. 8
 4.1 Conventional Repair Techniques without Alloplastic Materials 8
 4.2 Conventional Repair Techniques with Alloplastic Materials 11

5.0 Alloplastic Materials in Incisional Hernia Surgery ... 14

6.0 Laparoscopic Repair of Incisional Hernias ... 18
 6.1 Technique of Laparoscopic Incisional Hernia Repair 19

7.0 Laparoscopic Repair of Incisional Hernias in Obese Patients 23
 7.1 Conclusions .. 24

8.0 References ... 24
1.0 Introduction

With an incidence of up to 20%, incisional hernias are the most common late postoperative complication following abdominal surgical procedures. Moreover, a substantial number of these patients (up to 52%) will develop a recurrent hernia due to a variety of causes. Given these high numbers, the treatment of incisional hernias has major socioeconomic importance.

Incisional hernias may have numerous causes (see Chapter 3). The causes may be surgical, relating to the technique of abdominal wall closure, or they may involve patient-dependent factors. The latter include age, nutritional status, underlying disease, coexisting diseases, previous operations, and disorders of collagen metabolism.

The high recurrence rate of incisional hernias (25–52%) after conventional suture repairs, has prompted a change in incisional hernia surgery, which began with the alloplastic technique of Stoppa and Rives in the 1970s and received further impetus with the first laparoscopic incisional hernia repair by LeBlanc in 1991.

The use of prosthetic materials to stabilize the abdominal wall has led to a marked decrease in recurrence rates. Among the various alloplastic techniques that are available (see Chapter 4), the sublay method has yielded excellent results compared with the onlay and inlay techniques. Placing the mesh material beneath the muscular layer of the abdominal wall appears to be a crucial factor in lowering the recurrence rate.

Conventional alloplastic repair techniques involve considerable dissection of the abdominal wall. This causes significant abdominal wall trauma, which appears to be responsible for the high rates of wound infection and wound complications associated with these techniques.

When an incisional hernia is repaired by the laparoscopic placement of an intraperitoneal mesh, there is no need to separate the abdominal wall layers. This not only reduces trauma to the abdominal wall but also lowers the incidence of wound infection. The repair is completed by intraperitoneal placement of an antiadhesive mesh.

Moreover, the laparoscopic intraperitoneal mesh repair bypasses the original operative site and thus avoids direct contact with old foreign material and any persistent cutaneous germs.

As a result of this development, laparoscopic techniques have been used with increasing frequency in recent years for the repair of abdominal wall hernias. High-cost implants and suboptimal mesh materials posed a serious initial obstacle to the widespread use of laparoscopic incisional hernia repairs. These problems have prompted numerous innovations for mesh implants.

This booklet includes the latest discoveries on the laparoscopic intraperitoneal onlay mesh repair as an effective addition to the spectrum of abdominal wall hernia repairs, including the development of innovative mesh implants.

2.0 Epidemiology of Incisional Hernias

Incisional hernias are among the most frequent late postoperative complications of abdominal surgery that require operative treatment. The incidence rates in published studies range from 4% to 24%. The average incidence appears to be in the range of 5–10%. Because of these figures, incisional hernias have a significant long-term impact on postoperative morbidity. It is estimated that approximately 800,000 laparotomies are performed annually in Germany alone.

Approximately 120,000 new incisional hernias develop each year, and approximately 100,000 incisional hernia repairs are performed, with an estimated annual cost volume of approximately 500 million EUR. This does not include the costs incurred by lost job time or occupational disability leading to early retirement. The socioeconomic costs of incisional hernias are substantial, therefore.
3.0 Etiology and Pathogenesis of Incisional Hernias

The development of an incisional hernia is a multifactorial process. Basically, it occurs when a disproportion arises between the intra-abdominal pressure load and the strength of the complex myofascial framework or surgically induced scar. So far, no single factor has been identified, that is sufficient in itself to cause an incisional hernia. Only 25% of incisional hernias develop during the first year. The causes of incisional hernias fall into two broad categories: technical aspects of the laparotomy closure and biological factors that affect scar healing (Table 1).

Absorbable suture materials lose their stability in 4–8 weeks. The formation of stable scar tissue is particularly important, therefore. The degree of stability produced by the scar is a controversial issue. In experiments on animals, from 15% to 50% of the initial abdominal wall strength was achieved in 3 weeks. It probably takes 1–2 years until definitive scar-tissue repair is complete. Nevertheless, the scar is competent to withstand most ordinary stresses following a technically proficient suture closure.

High suture tension and the development of necrosis may lead to wound infection. These factors may possibly account for the early postoperative occurrence of an incisional hernia, but they cannot explain its development at a later date.

Midline laparotomies are associated with the highest risk of incisional hernia, but in the light of final analysis, the yielded data is heterogenous. The fascia is supposed to be subjected to particularly strong tensile stresses and pressure loads in the region of the upper median plane, which consequently is the most frequent site of occurrence. Alternative approaches, especially via transverse laparotomies, should be considered whenever possible. In many cases, however, surgeons are reluctant to sacrifice the advantages of a rapid, extendable midline incision that will permit exploration of the entire abdomen if needed. Emergency procedures are associated with a higher risk of incisional hernia formation.

In studies of collagen metabolism, some patients who developed an incisional hernia several years after laparotomy were found to have a defect in specific collagen synthesis. The analysis of extracellular matrix components in patients with incisional hernias has consistently shown an increased proportion of immature type III collagen in the skin, fascia, or peritoneum, with a corresponding decrease in the ratio of collagen types I and III. The suspicion of a genetically linked, systemic connective tissue disorder is supported by finding a decreased expression of MMP-1 and an increased expression of MMP-13 in the skin of these patients.

A primary defect of scar formation would account for the high recurrence rates after repetition of the initially failed procedure and would explain the increased incidence of hernias in patients with collagen disorders. It also supports the rationale for changing to alloplastic materials in the treatment of incisional hernias.

The importance of technical factors is reflected in the varying incidence of incisional hernias among different surgeons, although the differences were not found to be statistically significant.

It is likely that a tight transmuscular suture promotes necrosis of the wound margins and leads to a higher incidence of incisional hernias. Moreover, all-layer sutures are associated with fewer incisional hernias than closure in multiple separate layers, at least in the midline region.
This may be because the wound margins cannot always be broadly encompassed in a layered closure. A continuous suture is preferred over simple interrupted sutures, as it distributes the stresses more evenly along the suture line. A 4:1 ratio of suture length to wound length is recommended for continuous sutures, and the stitch interval should not exceed 1 cm. This results in a significantly lower rate of incisional hernias.

The superiority of nonabsorbable sutures over absorbable sutures for wound closure has not been definitely established. In patients with delayed wound healing, a history with risk factors, and a mechanically stable absorbable suture line, there is only a 4- to 8-week period in which there is an increased incidence of wound disruption and incisional hernia formation.

In summary, the pathogenesis of incisional hernias is a multifactorial process. It is very likely that the coexistence of several adverse factors, including constitutional features, contribute to the development of an incisional hernia.

4.0 Conventional Repair Techniques

4.1 Conventional Repair Techniques without Alloplastic Materials

The indication for an incisional hernia repair is based on the subjective complaints of the patient and on impending complications. The most serious complication is the incarceration of bowel tissue in the hernial opening, causing a critical reduction of blood flow to the entrapped viscera. Impending skin ulceration is another consequence of large abdominal hernias. Intestinal organs may protrude from the abdominal cavity into the hernia sac, depending on the size of the fascial defect, causing adverse mechanical effects as well as cosmetic deformity. The defect in the abdominal wall inhibits diaphragmatic breathing and causes significant limitation of strength and motion. Incarceration is an absolute indication for hernia repair. All other cases require a preoperative risk assessment. Returning the herniated tissues to the abdominal cavity changes the position of the diaphragm, resulting in improved lung performance. A risk analysis for pulmonary compensation capacity should be included in preoperative preparations for an incisional hernia repair.

Particularly strict criteria should be applied in selecting patients with hepatic cirrhosis and ascites for a hernia repair. The mortality and morbidity rates are substantially higher in these patients, and the indications for operative treatment should be viewed very critically in this subgroup.

The oldest techniques, and those having the poorest long-term results, are conventional suture techniques for closing the abdominal wall and repairing an incisional hernia. The suture techniques have been repeatedly modified over the years. Ultimately, only the initial part of the operation has been standardized. The first step in the operation is scar excision, followed by the lysis of adhesions.

Thus, this type of incisional hernia repair always includes a relaparotomy. After the lysis of adhesions, the scarred fascial margin is excised and the abdomen is closed with an initial row of peritoneal sutures. This is followed by the actual fascial repair. This step may involve duplication of the fascia as in the Mayo technique, or it may involve an edge-to-edge reapproximation of the fascial margins. Suture options include interrupted sutures, mattress sutures, and continuous sutures. A variation is the “swinging-door repair,” which may be single (including only the upper fascial layer of the rectus sheath) or double (encompassing both layers). In this technique the fascial layer is incised approximately 3–5 cm from the midline and folded over to the midline as a flap to reinforce the median closure (Fig. 1).

![The swinging-door repair of Farthmann and Mappes](image)
Retrospective studies on incisional hernia repairs with simple suture techniques are reviewed in Table 2. An advantage of these studies is their long follow-up periods ranging from 2 to 7 years. Long follow-ups are necessary for an accurate evaluation of the methods. Late recurrences after 10 years or more are known to occur with inguinal hernia repairs. Presumably the pathophysiology of this process is based on an abnormal ratio in the synthesis of collagen types I and III.

Although the long-term results of simple suture repairs are not convincing, a few indications for these techniques can be derived from the study data. These techniques may be appropriate if the hernial opening measures less than 3 cm and the patient is undergoing an initial repair. Whenever possible, a horizontal repair should be done using nonabsorbable, monofilament material and a continuous suture line with a 4:1 ratio of suture length to wound length.

One alternative to simple suture techniques is the autodermal hernioplasty, in which the old scar is used for fascial reinforcement. The necessary skin is mobilized from the old scar as a flap or strip, and the subcutaneous tissue is removed. The mobilized flap or strip is pretreated for 5 seconds with boiling NaCl solution. This contact is brief enough to protect the corium from thermal injury. All cutaneous flora are eradicated by incubating the flap or strip in 96% alcohol for 3 minutes, then washing the flap before use.

The Lezius repair employs tissue strips that incorporate portions of the rectus muscle (Fig. 2). The strips are sutured in the midline at the level of the posterior layer of the rectus sheath. The anterior fascial layer is dissected off the rectus muscle, and the muscle is incised laterally so that the strips can be laced through.

Table 2: Long-term results of simple conventional suture repairs

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Number (n)</th>
<th>Follow-up Years</th>
<th>Recurrence Rate (%)</th>
<th>Recurrence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langer, Sweden</td>
<td>1985</td>
<td>72</td>
<td>7.0</td>
<td>74</td>
<td>31</td>
</tr>
<tr>
<td>Van der Linden, USA</td>
<td>1988</td>
<td>47</td>
<td>3.3</td>
<td>100</td>
<td>55</td>
</tr>
<tr>
<td>Read, USA</td>
<td>1989</td>
<td>169</td>
<td>5.0</td>
<td>89</td>
<td>25</td>
</tr>
<tr>
<td>Männinen, Finland</td>
<td>1991</td>
<td>57</td>
<td>4.5</td>
<td>92</td>
<td>34</td>
</tr>
<tr>
<td>Hesselink, Netherlands</td>
<td>1993</td>
<td>231</td>
<td>2.9</td>
<td>98</td>
<td>36</td>
</tr>
<tr>
<td>Luijendijk, Netherlands</td>
<td>1997</td>
<td>68</td>
<td>variable</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Paul, Germany</td>
<td>1997</td>
<td>111</td>
<td>5.7</td>
<td>84</td>
<td>53</td>
</tr>
<tr>
<td>Luijendijk, Netherlands</td>
<td>2000</td>
<td>97</td>
<td>2.2</td>
<td>84</td>
<td>46</td>
</tr>
</tbody>
</table>

The Lezius repair.
The strips should overlap at the center and are also sutured together at that point. In the Rehn skin-flap repair, the skin can be utilized as a biological inlay or onlay mesh (Fig. 3 and Fig. 4). This technique is not widely practiced, and there are only a few centers that have adequate experience with this type of repair. This makes the published data all the more remarkable. With acceptable follow-up periods ranging from 2 to 5 years and follow-up rates of 84% to 100%, good results have been achieved in terms of reported recurrence rates, which range from 1% to 7.6%. The recurrence rates vary between 1% and 14% (Table 3), indicating better results than those obtained with simple suture repairs. The flap and strip techniques have three major drawbacks, however. First, surgeons have had very little experience with these repairs, which often have only historical validity.

Second, tissue of poor quality is used in the repair. The hernia was caused in part by abnormal scar formation yielding a relatively fragile mix of collagen types I and III, but this same scar tissue is used in the repair. Third, these repair techniques correlate with an unacceptably high rate of wound healing problems ranging from 6% to 29%.

These techniques are most appropriate for larger hernias that cannot be reapproximated with sutures or cannot be repaired with alloplastic material because of infection.

For completeness, we should mention the abdominal-wall-component separation technique of Ramirez. This technique may be suitable for the plastic repair of very large hernias (e.g., following a laparostomy with marked lateral deviation of the muscle bellies).

<table>
<thead>
<tr>
<th>Author</th>
<th>Year / Number</th>
<th>Follow-up years</th>
<th>Wound Problems (%)</th>
<th>Recurrence Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kozuschek</td>
<td>1983</td>
<td>105</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>Kranich</td>
<td>1990</td>
<td>66</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Watier</td>
<td>1992</td>
<td>30</td>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>Chareton</td>
<td>1994</td>
<td>25</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
4.2 Conventional Repair Techniques with Alloplastic Materials

The simple suture techniques are marred by poor long-term results, and the recurrence rates may exceed 50%. This led in the early 1980s to the introduction of alloplastic mesh techniques for incisional hernia repairs\(^7\).

To date, no randomized prospective cohort studies have been conducted on “suture repair versus mesh repair of incisional hernias”. The retrospective studies published so far have consistently shown better results with alloplastic repairs (Table 4). This led the American Hernia Society to establish the mesh repair as the standard operative treatment for incisional hernias.

The conventional alloplastic options are the inlay, onlay, sublay, and open IPOM repairs.

In the inlay technique, the mesh is sutured into the defect to obtain a tension-free reconstruction of the abdominal wall (Fig. 5). Generally, it is necessary to perform a relaparotomy with lysis of adhesions. A great variety of mesh materials have been used, and no clear preference has emerged for any one type of mesh. Recurrence rates of up to 44% have been described, regardless of the material used\(^44,46–48\). Thus, the inlay technique has the poorest results of any of the mesh repairs (Table 5). Using this technique, the mesh is circumferentially attached to the fascial margins with continuous sutures. This is a site of predilection for recurrence as the mesh tears free at its line of attachment to the fascia. The mesh does not overlap the fascial margins in the inlay technique.

Table 4: Comparison of suture and mesh techniques in incisional hernia repairs

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Technique</th>
<th>n</th>
<th>Recurrence Rate (in %)</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liakakos(^6)</td>
<td>1994</td>
<td>Suture repair</td>
<td>53/49</td>
<td>25/8</td>
<td>90/90</td>
</tr>
<tr>
<td>Schumpelick(^6)</td>
<td>1996</td>
<td>Suture repair</td>
<td>190/82</td>
<td>33/7</td>
<td>64/64</td>
</tr>
<tr>
<td>Koller(^4)</td>
<td>1997</td>
<td>Suture repair</td>
<td>70/26</td>
<td>68/13</td>
<td>24/24</td>
</tr>
<tr>
<td>Luijendijk(^4)</td>
<td>2000</td>
<td>Suture repair</td>
<td>97/87</td>
<td>46/23</td>
<td>26/26</td>
</tr>
<tr>
<td>Burger(^1)</td>
<td>2004</td>
<td>Suture repair</td>
<td>97/87</td>
<td>63/32</td>
<td>97/98</td>
</tr>
</tbody>
</table>

PP (polypropylene); ePTFE (expanded polytetrafluoroethylene).

Table 5: Results of hernia repairs with inlay mesh

<table>
<thead>
<tr>
<th>Author / Year</th>
<th>n</th>
<th>Material</th>
<th>Follow-up</th>
<th>Recurrence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambrosiani, 1994(^4)</td>
<td>83</td>
<td>ePTFE</td>
<td>>12 month</td>
<td>42%</td>
</tr>
<tr>
<td>Anthony, 2000(^2)</td>
<td>29</td>
<td>PP</td>
<td>44 month</td>
<td>29%</td>
</tr>
<tr>
<td>de Vries, Reilingh, 2004(^6)</td>
<td>23</td>
<td>PP</td>
<td>33 month</td>
<td>44%</td>
</tr>
</tbody>
</table>

PP (polypropylene); ePTFE (expanded polytetrafluoroethylene).
The onlay technique was introduced by Chevrel. Like the inlay technique, this procedure requires a relaparotomy and lysis of adhesions. The mesh is placed in the subcutaneous plane to reinforce the suture repair (Fig. 6). The subcutaneous tissue is widely dissected laterally from the anterior fascial layer of the rectus sheath. One disadvantage of this technique is that it reduces blood flow to the bradytrophic subcutaneous tissue, which is supplied by perforator vessels from muscular branches of the abdominal muscles.

All types of mesh have been used in onlay repairs. Meshes made of ePTFE have shown problems with subcutaneous seroma formation, which is less pronounced with other mesh materials. Overlapping the scar at least 3 cm on all sides provides a stability that results in a strong repair. Another drawback of this method is the large raw surfaces that are created (see above), and wound infection rates as high as 27.7% have been reported. The subcutaneous placement of the mesh may cause a painful or uncomfortable corset sensation in some patients, but this complication may be largely preventable by using different types of mesh (see Chap. 5).

The recurrence rate after onlay repair is significantly lower than with the inlay technique (Table 6).

The third method – the sublay technique of mesh implantation – is the most widely practiced alloplastic repair (Fig. 7). Introduced by Rives and Stoppa, the sublay technique involves dissection of the retro-muscular space in front of the posterior fascial layer on both sides of the hernia, which then allows the mesh to be inserted and fixed to this layer with sutures. In cases where the peritoneum and posterior fascial layer can be completely preserved, it is safe to use a polypropylene or polyester mesh.

Table 6: Results of hernia repairs with onlay mesh

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Material</th>
<th>Follow-up Years</th>
<th>Mortality</th>
<th>Results Wound Infection (%)</th>
<th>Recurrence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molloy</td>
<td>50</td>
<td>Marlex</td>
<td>4</td>
<td>100</td>
<td>0</td>
<td>26</td>
</tr>
<tr>
<td>Kennedy</td>
<td>40</td>
<td>Gore-Tex</td>
<td>4</td>
<td>84</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>Liakakos</td>
<td>49</td>
<td>Marlex</td>
<td>8</td>
<td>98</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Küng</td>
<td>47</td>
<td>Marlex</td>
<td>6</td>
<td>83</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>Vestweber</td>
<td>36</td>
<td>Prolene</td>
<td>3</td>
<td>86</td>
<td>2.7</td>
<td>27.7</td>
</tr>
<tr>
<td>Leber</td>
<td>118</td>
<td>Marlex</td>
<td>6.7</td>
<td>88</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

Diagrammatic representation of the onlay technique for hernia repair.

Diagrammatic representation of the sublay technique for hernia repair.
Contact with the bowel should be avoided when these meshes are used to help prevent the occurrence of long-term fistula formation to bowel or bladder. The sublay technique is completely tension-free because after closure in the midline, the supportive layers of the abdominal wall act as a sturdy abutment. In terms of recurrence rates, it has yielded the best results of any of the incisional hernia mesh repairs, with an average recurrence rate between 5% and 10%\(^4\),\(^6\),\(^56\)-\(^60\) (Table 7). On the other hand, this technique has been associated with wound infection rates as high as 29%. When polypropylene or other meshes besides ePTFE are used, it is not strictly necessary to remove the mesh\(^4\),\(^32\),\(^45\),\(^55–60\),\(^62–64\). This is not true with ePTFE meshes, which should always be removed in cases of infection.

The recurrences were described as occurring at the upper and lower edges of the mesh. The entire scar had not been covered with mesh during the initial repair. Laparoscopic inspection permits a complete and accurate assessment of the scar. At this time, it is not uncommon to find a “Swiss cheese” pattern of small hernias permeating the upper or lower segment of the scar. The concept of the “fatty triangle” has been adopted in the literature as a means of preventing a recurrence at the upper and lower ends of the scar\(^65\) (Figs. 8a, b).

In 1999, Kubo developed a special sublay repair technique called rectus banding\(^91\),\(^92\). In this technique the rectus abdominis muscle is partially encircled with 2-cm-wide Prolene strips placed at 2-cm intervals in the sublay position (Figs. 8a, b). The historical origin of this technique is the skin-graft repair of Lezius. The goal is to achieve a simple and cost-effective repair with secure mesh fixation. Employing this technique, the mesh strips eliminate the painful abdominal-wall stiffening that may occur with heavyweight or mid-weight meshes. Hernia recurrence between the mesh strips, according to the authors, has not proven to be a significant problem on long-term follow-up.

Table 7: Results of hernia repairs with sublay mesh

<table>
<thead>
<tr>
<th>Author</th>
<th>n</th>
<th>Material</th>
<th>Follow-up (months)</th>
<th>(%) Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adloff(^56)</td>
<td>130</td>
<td>Mersilene</td>
<td>36</td>
<td>5</td>
</tr>
<tr>
<td>McLahan(^57)</td>
<td>106</td>
<td>PP</td>
<td>24</td>
<td>3.5</td>
</tr>
<tr>
<td>Amid(^54)</td>
<td>75</td>
<td>Marlex</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>Schumpelick(^6)</td>
<td>82</td>
<td>Marlex</td>
<td>> 60</td>
<td>7</td>
</tr>
<tr>
<td>Sugerman(^8)</td>
<td>98</td>
<td>Marlex</td>
<td>>18</td>
<td>4</td>
</tr>
<tr>
<td>Ladurner(^65)</td>
<td>52</td>
<td>PP</td>
<td>6–33</td>
<td>2</td>
</tr>
<tr>
<td>Petersen(^6)</td>
<td>50</td>
<td>Goretex/PP</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Bencini(^92)</td>
<td>49</td>
<td>PP</td>
<td>18</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Diagrammatic representation of the operative site.

Abdominal cross section showing the position of the Prolene mesh strip.
The open intraperitoneal onlay mesh technique (open IPOM) (Figs. 9a, b) is an open surgery variant of the sublay method. If the posterior layer of the rectus sheath or the peritoneum is found to be deficient, it will be necessary to place the mesh on the bowel beneath the posterior rectus sheath and peritoneum. “Onlay” in this case means that the mesh is placed directly on the bowel and not on the rectus sheath. The drawback of this method is that it limits the selection of mesh materials that can be safely placed in contact with the bowel. At present, only special meshes with anti-adhesive barrier can be safely used without a long-term risk of enteric fistula formation. The results appear to be comparable to those of sublay repairs.

In summary, the alloplastic repair of incisional hernias has led to a significant decline in recurrence rates. The main disadvantages of mesh repairs are the high incidence of wound infection and the difficulty of placing the sublay mesh in the “fatty triangle” (epigastrium and suprapubic region).

5.0 Alloplastic Materials in Incisional Hernia Surgery

The use of alloplastic mesh materials in abdominal hernia repairs has significantly reduced the incidence of recurrent hernias. Several studies have shown that the risk of a recurrent hernia following an alloplastic mesh repair is markedly lower than after a non-mesh repair.

The development of new, complex tissue materials is continuing.

The goal is to develop an optimum mesh structure and weight, whose ideal properties are shown in Table 8.

<table>
<thead>
<tr>
<th>Table 8: Ideal properties of an alloplastic mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemically inert</td>
</tr>
<tr>
<td>Sterilizable</td>
</tr>
<tr>
<td>Stable on tissue contact</td>
</tr>
<tr>
<td>Good mechanical strength and stability</td>
</tr>
</tbody>
</table>
Large pores are also essential in combating mesh infections. The host tissues can mount an effective response only if the pores are permeable for host granulocytes (10–15 μm).

This problem is also reflected in the structure of the mesh, where monofilaments or dual filaments create a large- or small-pore mesh architecture compared with multifilaments or expanded polytetrafluoroethylene (ePTFE) with micropores.

Most mesh implants today are made from synthetic materials. In principle, synthetic mesh materials can be divided into absorbable and nonabsorbable products. While large-pore polypropylene or polyester meshes are used in inlay, onlay, and sublay repairs, composite meshes – instead of pure polytetrafluoroethylene (ePTFE) meshes – are increasingly being developed for IPOM repairs.

Composite meshes are designed to allow direct contact between the mesh and bowel in the IPOM technique. A major drawback of these meshes in the past has been high material costs, which – prior to introduction of the “special expenses rule” in Germany – limited the widespread use of laparoscopic techniques.

At present, three product strategies are being pursued in the development of synthetic mesh implants:

1. Composite meshes with nonabsorbable functional surfaces
2. Composite meshes with an absorbable functional surface on one side
3. Layered meshes

Mesh studies in recent years have shown that reducing the amount of material in the mesh results in greater elasticity of the induced scar plate. In the case of polypropylene (PP), a direct correlation exists between the amount of material implanted and the foreign-body reaction that is induced. This discovery has largely eliminated the problem of a “stiff abdomen” that initially occurred in mesh repairs of incisional hernias.

Large-pore meshes have scientifically proven advantages. They avoid the dreaded “bridging effect” (in PP structures with a pore size < 1 mm), which would prevent peritonealization of the mesh (Fig. 10).
1. Composite meshes with nonabsorbable functional surfaces

Meshes (examples)
- DualMesh® (Gore®): ePTFE with a small-pore visceral surface and a coarse-textured fascial surface
- TiMESH® (GfE): titanium-coated PP

Most experience to date with intraperitoneal mesh placement has been reported for the material ePTFE (Figs. 11a, b). Even studies in large series of patients have shown minimal adhesion formation and absence of fistula formation with this material. Among the known disadvantages are circumscribed integration of the membrane structure into the abdominal wall and a tendency for the implant to undergo shrinkage. This material can be combined with PP on the fascial side to optimize integration of the mesh and to reduce its susceptibility to shrinkage.

Coating the polypropylene mesh with titanium to lower surface tension has reduced implant shrinkage in experimental animals and resulted in less adhesion formation compared with ePTFE.

2. Composite meshes with an absorbable functional surface on one side

Meshes (examples)
- Parietex™ Composite (Covidien): polypropylene with a hydrogel coating on one side (polyethylene glycol + glycerol)
- Sepramesh™ (C.R. Bard Inc.) Ventralight™ ST Mesh – Polypropylene with hydrogel coating on one side (disaccharide N-acetylglucosamine glucuronic acid + carboxymethylcellulose)
- Proceed™ (Ethicon) – Polypropylene with polydioxanone (PDS) coating and a layer of oxidized regenerated cellulose (ORC) fabric.
- C-QUR Edge™ (Atrium): polypropylene with an omega 3 oil coating

In this principle the polypropylene base material is coated on one side with a closed, absorbable film that is designed to prevent bowel adhesions during the initial phase of mesh integration. As this protective layer is absorbed, the polypropylene undergoes a simultaneous peritonealization.

Numerous animal studies have been done to test the desired properties of mesh implants. The presence of a coating was found to reduce the formation of bowel adhesions compared with uncoated polypropylene. In a rat model, it could be demonstrated that polypropylene meshes with a hydrogel coating showed markedly improved antiadhesive properties. Film-coated PP meshes were also found to undergo less shrinkage than uncoated counterparts.

The initial impermeability of the coating is cited as a disadvantage with regard to seroma formation.
3. Layered mesh

Mesh (example)
- DynaMesh® (FEG Textiltechnik GmbH, Germany) – a dual-layer composite made of polyvinylidene fluoride (PVDF)-coated polypropylene (PP)

Besides these strategies for mesh implant designs, there are other developments that still have minor clinical significance at the present time.

For example, **meshes impregnated with antimicrobial agents** (ePTFE with chlorhexidine and silver carbonate; PVDF + PAAc with gentamicin) have been developed to suppress bacterial colonization after mesh implantation\(^{110, 111}\), however clinical data obtained through comparative studies demonstrating a clinical benefit from the use of this type of mesh implants are still lacking.

Biological materials and meshes have also been produced in the form of **natural acellular collagen membranes** with the goal of stimulating self-repair processes in the surrounding tissue.

A recent publication found a 20% recurrence rate for hernias repaired with decellularized collagen membrane\(^{114}\). Another study showed benefits of using this material in infected or potentially infected fields\(^{115}\).

The two-layered structure of the mesh implant consists of PVDF monofilament on the side facing the bowel and polypropylene on the fascial side. The implant has a purely textile, open-pore structure.

Animal studies have shown mild inflammation and less shrinkage compared with conventional mesh implants\(^{110, 111}\).

Sample products:
- Surgisis® Biodesign (Cook Biotech): collagen membrane derived from the submucosa of porcine intestine
- Tutomesh (Tutoplast): collagen membrane derived from bovine pericardium
- CollaMend (C.R. Bard Inc.): collagen membrane derived from porcine collagen
- AlloDerm (LifeCell Corporation, U.S.): collagen membrane derived from homologous human skin
- Permacol (Tissue Science Laboratories): collagen membrane derived from porcine skin collagen

Adhesion barrier films (e.g., SurgiWrap™ from MAST Biosurgery Inc., USA) have also been developed to reduce adhesion formation. However, animal studies have not shown these films to be advantageous when combined with a coated mesh implant\(^{116}\).
6.0 Laparoscopic Repair of Incisional Hernias

The method of laparoscopic incisional hernia repair was developed in the early 1990s. The first report, published in 1993, described a ventral abdominal hernia that was repaired entirely by the laparoscopic implantation of an intraperitoneal mesh. The laparoscopic intraperitoneal onlay mesh (IPOM) technique and mesh materials were developed further in subsequent years, and there have been numerous reports on the successful use of the IPOM technique even for large hernial openings, in obese (BMI > 30) and morbidly obese patients (BMI > 40), and in elderly patients. The reduced surgical trauma and lower rates of infection and recurrence are key advantages of the minimally invasive repair (Table 9).

In a laparoscopic intraperitoneal mesh repair, it is unnecessary to separate the layers of the abdominal wall. This results in less abdominal wall trauma without disruption of abdominal wall nerve supply, and a lower incidence of wound infection. It is essential to perform a careful and complete laparoscopic adhesiolysis prior to mesh implantation. A possible bowel lesion is an important decision-making criterion for further operative management.

Another advantage of the IPOM technique is that it bypasses the original field and thus avoids contact with old foreign material and any persistent microorganisms that may be present.

For some years, the ePTFE sheet was the only acceptable mesh implant for intra-abdominal use. So far, ePTFE seemed to be associated with very little adhesion formation. Most experience to date has been reported for this material. In 2003, Heniford et al. published the results of 850 laparoscopic ventral hernia repairs, 97% of which had been performed with ePTFE DualMesh.

The range of meshes available for IPOM repairs has expanded considerably in recent years and now includes composite meshes with nonabsorbable functional surfaces, composite meshes with an absorbable functional surface on one side, and layered meshes composed of many new innovative materials and combinations of materials. Meshes made of biological material are currently also available (Chapter 5.0).

Besides the special requirements of meshes used in the IPOM technique, the cost of the implant is also an important factor in selecting a mesh for clinical use.

The surgical techniques that are used in laparoscopic incisional hernia repairs are comparable to one another and mostly differ only in the method of attaching the mesh to the anterior abdominal wall. The mesh may be attached to the anterior abdominal wall with transfascial sutures, spiral tacks, or a combination of both. In a review of the literature, LeBlanc (2007) found that a successful repair required a large overlap of the implant (5 cm) over the edges of the hernial opening. This appeared to be a more important factor than whether or not transfascial sutures were used. Results of prospective randomized studies are not available.

The details of our preferred operative technique are described below.
6.1 Technique of Laparoscopic Incisional Hernia Repair

The surgery is performed under general anesthesia. The patient is positioned supine. Videoendoscopic surgery should be performed in an operating room in which the surgeon and assistant can quickly alter the direction of the surgery, and thus the viewing angle, without awkward repositioning of the monitors. Multiple monitors should be installed (Fig. 12).

Integrated modular operating systems meet this requirement and enable the surgical team to quickly adjust surgical parameters from within the sterile field. This is particularly important in this type of operation, where unforeseen adhesions may require rapid adjustments in operating direction, patient position, intra-abdominal pressure, light intensity, etc. Current developments in HD camera heads and high-resolution large-format HD video monitors (16:9 aspect ratio) offer the surgeon a new level of video image detail that permits extremely precise surgical dissection.

The primary trocar is introduced through a minilaparotomy at some distance from the site of the incisional hernia. We consistently place this initial trocar below the costal margin in the left upper quadrant of the abdomen, because we know from experience that it causes the least adhesions (Fig. 13a).

If the hernia is located in this region or if the patient is known to have had previous surgery in the left upper quadrant, the primary trocar can be placed in the right side of the abdomen at least 10 cm from the original surgical scar. It is now decided whether CO2 will be insufflated through a Veress needle, which is introduced blindly, or through a minilaparotomy followed by the placement of the first 11-mm trocar (Fig. 13b).

Normally, an open surgery approach is not required. Access to the abdominal cavity is obtained by use of a Veress needle.

The pneumoperitoneum is created through a minilaparotomy.
The trocars should be placed an adequate distance from the fascial margin.

When carbon dioxide is insufflated, the adhesions usually come under tension and the plane of the dissection can be identified.

The mesh should overlap the fascial margins by 4–5 cm on all sides. Corresponding points should be accurately marked on the mesh and on the abdominal wall. The other trocar sites – usually a total of 3–4 ports – are placed according to hernia location. They should always be placed an adequate distance from the fascial defect (Fig. 14). The use of a HOPKINS® rod-lens telescope with a 30° viewing angle is essential. The next step is to clear all adhesions from the anterior abdominal wall. Adhesiolysis is performed with a scissors (usually without electrocautery), but not with an ultrasonic scissors. Great care is taken to avoid thermal and mechanical injury to the bowel, and the procedure should be closely monitored for possible removal of serosa or iatrogenic bowel injuries. CO₂ insufflation will place tension on the adhesions, making it easier to identify the plane of the dissection (Fig. 15a).

When all adhesions have been removed, the hernia site can be clearly visualized from within the abdomen (Fig. 15b). In some cases, additional smaller hernial defects may be seen along the course of the scar that were previously undetected by clinical examination. This underscores the need to cover the entire scar with mesh.¹²

Area of herniation, (red). Entire area of the scar covered by the mesh (blue).
Next, the defect is precisely measured and marked on the abdominal skin. Extracorporeal anchoring sutures are attached to the marked positions (“cardinal points”) (Figs. 18a, b; p. 22).

The final objective is to establish a reliable fixation of the mesh to the abdominal wall. This, in most cases, requires the falciform ligament to be incised in a cranial direction. Provided far caudal location of the hernia, the prevesical space (of Retzius) also needs to be included in pelvic dissection. This precautionary step provides adequate space anterior to the bladder to make sure that the mesh can be safely affixed to the abdominal wall. Given a localized and well-circumscribed hernia, i.e., not a definite defect, the gap should be closed with an intracorporeal absorbable suture prior to mesh implantation (Fig. 17a, b). As a rule, this preemptive measure aids in improving the cosmetic outcome and appears to diminish the rate of seroma formation.

Accurate measurement of the hernia defect.

The falciform ligament is incised in a cranial direction.

Incision carried through the medial umbilical folds during dissection of the space of Retzius.

Closure of a well-circumscribed hernia with an absorbable suture.
Non-absorbable sutures are preplaced outside the body – after proper marking of the “cardinal points” on the uncoated mesh surface (Fig. 18a, b).

At this stage of the operation, the implanted mesh is under slight tension beneath the abdominal wall, but after release of the pneumoperitoneum, the mesh will cover the fascial defect free of tension. The operation concludes with meticulous closure of the trocar sites. The authors routinely apply a stabilizing brace, that is worn for about 14 days postoperatively for seroma prophylaxis.

Subsequently, the preplaced transfascial sutures are tied and buried in the subcutaneous plane.
Obesity is a special risk factor for the development of incisional hernias. One reason for this is the need to use larger incisions in obese patients, leading to a higher rate of wound infection, and the greater frequency of comorbidity in this population.

Open hernia repairs in obese patients have up to a 50% recurrence rate due to the greater access trauma and the higher incidence of infection. The laparoscopic technique was traditionally considered problematic in obese patients due to relatively poor intra-abdominal visualization and limited instrument ranges. The conversion rate was relatively high. In recent years, however, experience and instrument modifications based on laparoscopic obesity surgery have led to a reduction of postlaparoscopic complications in obese patients.

In an observational study by Novitsky et al. (2006) in 163 patients with incisional hernias and a high body mass index (BMI > 38), conversion to open surgery was necessary in only five of the patients who underwent laparoscopic hernia repair. Complications arose in 12.3% of the patients: abdominal complaints lasting more than 6 months (3.7%), urinary tract infections (8.9%), pulmonary complications (2.5%), mesh infections (1.2%), one trocar hernia infection, and one infection with Clostridium difficile. No deaths occurred. The recurrence rate at two years was 5.5%. Similar results were reported in a multicenter study by Tsereteli et al. (2008) in 134 patients with a BMI > 40 compared with 767 patients with a BMI < 40. During a mean follow-up of 19 months, the recurrence rate was 8.3% in the obese group versus 2.9% in the nonobese group. The conversion rate was slightly lower in the obese group (2.3% vs. 2.9%) and the average operating time was 35 minutes longer. The authors conclude that laparoscopic incisional hernia repair is safe and feasible in morbidly obese patients and is associated with a higher but acceptable recurrence rate.

Incisional hernia operations in obese patients using laparoscopic technique have several special requirements that must be considered. These include open creation of the pneumoperitoneum, meticulous hemostasis, the lysis of adhesions without electrocautery, and a larger overlap of the abdominal defect (mesh size 600–800 cm²). Weight reduction prior to incisional hernia repair is advisable and will lower the risk of recurrence. It might also be worthwhile to consider a bariatric procedure approximately 12–18 months before the hernia repair.
7.1 Conclusions
The results of the laparoscopic repair of incisional hernias with the aid of a dedicated mesh implant show that this technique is a valuable addition to the surgical armamentarium for the treatment of this condition. With regard to tension-free positioning, the outcomes of laparoscopic mesh placement correspond to those obtained through a dorsal retromuscular mesh repair. This type of mesh placement appears to be favorable in terms of recurrence prevention and causes considerably less trauma to the abdominal wall. Using the laparoscopic technique, it is possible to repair a recurrent hernia with minimal trauma even after a previous conventional surgical approach. As a matter of course, patients with severe adhesions (“battlefield abdomen”) must be excluded. A laparoscopic treatment option should be considered by any surgeon faced with the decision-making as to which operative procedure be adopted.

8.0 References

Laparoscopic Repair of Incisional Hernias

Laparoscopic Repair of Incisional Hernias

124. KOLLER R', MIHOLIC J, JAKL RJ: Repair of incisional hernias with expanded polytetrafluoroethylene.

Recommended Set for Laparoscopic Repair of Incisional Hernias
Instruments, Units and Accessories
Laparoscopic Repair of Incisional Hernias – On the Treatment of Incisional Hernias

Recommended Instrument Set, Units and Accessories

26003 AA HOPKINS® Straight Forward Telescope 0°, enlarged view, diameter 10 mm, length 31 cm, autoclavable, fiber optic light transmission incorporated, color code: green
26003 BA HOPKINS® Forward-Oblique Telescope 30°, enlarged view, diameter 10 mm, length 31 cm, autoclavable, fiber optic light transmission incorporated, color code: red
26003 AE ENDOCAMELEON® HOPKINS® Telescope, diameter 10 mm, length 32 cm, autoclavable, variable direction of view from 0°–120°, adjustment knob for selecting the desired direction of view, fiber optic light transmission incorporated, color code: gold
30160 MP 3 x Trocar, with pyramidal tip, with insufflation stopcock, size 6 mm, working length 10.5 cm, color code: black, including:
- Cannula, without valve
- Trocar only
- Multifunctional Valve
30103 MP 2 x Trocar, with pyramidal tip, with insufflation stopcock, size 11 cm, working length 10.5 cm, color code: green, including:
- Cannula, without valve
- Trocar only
- Multifunctional Valve
30103 AO Trocar, size 11 mm, color code: green, including:
- Trocar only, with blunt tip
- Cannula, with 2 flanges for fixation of sutures, adjustable cone, with insufflation stopcock, working length 13 cm
- Automatic Valve
- Cone or
26120 J VERESS Pneumoperitoneum Needle, with spring-loaded blunt inner cannula, LUER-Lock, autoclavable, diameter 2.1 mm, length 10 cm
30140 DB Reduction Sleeve, reusable, instrument diameter 5 mm, trocar cannula outer diameter 11 mm, color code: green
30142 HB Double Reducer, 13/10 mm, 13.5/10 mm, 13/5 mm and 13/5.5 mm
33353 ON CLICKLINE Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, with LUER-Lock irrigation connector for cleaning, single action jaws, with especially fine atraumatic serration, fenestrated, size 5 mm, length 36 cm
33351 ML CLICKLINE Dissecting and Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, LUER-Lock connector for cleaning, double action jaws, size 5 mm, length 36 cm
33351 DN CLICKLINE Dissecting and Grasping Forceps, “dolphin nose”, rotating, dismantling, insulated, with connector pin for unipolar coagulation, with LUER-Lock irrigation connector for cleaning, double action jaws, size 5 mm, length 36 cm
33351 DF CLICKLINE Dissecting and Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, double action jaws, atrumatic, size 5 mm, length 36 cm
33353 CC CLICKLINE CROCE-OLMI Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, with LUER-Lock irrigation connector for cleaning, single action jaws, atrumatic, fenestrated, curved, size 5 mm, length 36 cm
34351 MA CLICKLINE Scissors, rotating, dismantling, insulated, with connector pin for unipolar coagulation, with LUER-Lock irrigation connector for cleaning, double action jaws, spoon-shaped blades, serrated, curved, size 5 mm, length 36 cm
38651 ON ROBI® Grasping Forceps, CLERMONT-FERRAND model, rotating, dismantling, with connector pin for bipolar coagulation, with especially fine atraumatic serration, fenestrated jaws, double action jaws, size 5 mm, length 36 cm, color code: light blue
30173 FAR KOH Macro Needle Holder, dismantling, with LUER-Lock irrigation connector for cleaning, single action jaws, straight jaws, with tungsten carbide inserts, with ergonomic handle, axial, disengagable ratchet, ratchet position right, size 5 mm, length 33 cm
30173 RAL KOH Macro Needle Holder, dismantling, with LUER-Lock irrigation connector for cleaning, single action jaws, jaws curved to right, with tungsten carbide inserts, with ergonomic handle, axial, disengagable ratchet, ratchet position left, size 5 mm, length 33 cm
30173 LAL KOH Macro Needle Holder, dismantling, with LUER-Lock irrigation connector for cleaning, single action jaws, jaws curved to left, with tungsten carbide inserts, with ergonomic handle, axial, disengagable ratchet, ratchet position left, size 5 mm, length 33 cm
26173 AM BERCi Fascial Closure Instrument, for subcutaneous ligature of trocar incisions, size 2.8 mm, length 17 cm, for closure of trocar incision wounds
HOPKINS® Straight Forward Telescopes
Diameter 10 mm, length 31 cm

Advantages of the HOPKINS® Laparoscopic Telescopes:
- Two and a half times greater image brightness
- Uniform image brightness, i.e. no reduction in luminous intensity from the center to the margin of the image
- Lower risk of object burns, i.e. the telescope requires a lower lamp output for the same perception of brightness
- Increased resolution of detail

It is recommended to check the suitability of the product for the intended procedure prior to use.
Trochars and Accessories
size 11 mm

30103 AO Trocar, size 11 mm, color code: green, including:
 Trocar only, with blunt tip
 Cannula, with 2 flanges for fixation of sutures, adjustable cone, with insufflation stopcock, working length 13 cm
 Automatic Valve
 Cone

26031 SO Retraktor, S-förmig

VERESS Pneumoperitoneum Needles

26120 J VERESS Pneumoperitoneum Needle, with spring-loaded blunt inner cannula, LUER-Lock, autoclavable, diameter 2.1 mm, length 10 cm
26120 JL Same, length 13 cm

BERCI Fascial Closure Instrument
for closure of trocar incision wounds

26173 AM BERCI Fascial Closure Instrument, for subcutaneous ligature of trocar incisions, size 2.8 mm, length 17 cm, for closure of trocar incision wounds
Trocar, with pyramidal tip,
with insufflation stopcock, size 6 mm,
working length 10.5 cm,
color code: black,
including:
Cannula, without valve
Trocar only
Multifunctional Valve

Trocar, with pyramidal tip,
with insufflation stopcock, size 11 cm,
working length 10.5 cm,
color code: green,
including:
Cannula, without valve
Trocar only
Multifunctional Valve

Trocar, with pyramidal tip,
with insufflation stopcock, size 13 mm,
working length 11.5 cm,
color code: black,
for use with linear staplers from the
company Covidien (formerly Tyco),
including:
Cannula
Trocar only
Multifunctional Valve

Reduction Sleeve, reusable,
instrument diameter 5 mm, trocar cannula
outer diameter 11 mm, color code: green

Double Reducer,
13/10 mm, 13.5/10 mm, 13/5 mm
and 13.5/5 mm

Trocar, with pyramidal tip,
with insufflation stopcock, size 6 mm,
working length 10.5 cm,
color code: black,
including:
Cannula, without valve
Trocar only
Multifunctional Valve

Trocar, with pyramidal tip,
with insufflation stopcock, size 11 cm,
working length 10.5 cm,
color code: green,
including:
Cannula, without valve
Trocar only
Multifunctional Valve

Trocar, with pyramidal tip,
with insufflation stopcock, size 13 mm,
working length 11.5 cm,
color code: black,
for use with linear staplers from the
company Covidien (formerly Tyco),
including:
Cannula
Trocar only
Multifunctional Valve

Reduction Sleeve, reusable,
instrument diameter 5 mm, trocar cannula
outer diameter 11 mm, color code: green

Double Reducer,
13/10 mm, 13.5/10 mm, 13/5 mm
and 13.5/5 mm

Trocar, with pyramidal tip,
with insufflation stopcock, size 6 mm,
working length 10.5 cm,
color code: black,
including:
Cannula, without valve
Trocar only
Multifunctional Valve

Trocar, with pyramidal tip,
with insufflation stopcock, size 11 cm,
working length 10.5 cm,
color code: green,
Dissecting and Grasping Forceps

CLICKLINE – rotational, can be dismantled, insulated, with connector pin for unipolar coagulation
Operating instrument, length 30, 36 and 43 cm, for use with trocars size 6 mm
Operating instrument, length 43 cm, for use with telescopes with inserted operating channel

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle 33151</th>
<th>Handle 33152</th>
<th>Handle 33153</th>
<th>Handle 33156</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 ML</td>
<td>33251 ML 33252 ML 33253 ML 33256 ML</td>
</tr>
<tr>
<td>33310 ML</td>
<td>33351 ML 33352 ML 33353 ML 33356 ML</td>
</tr>
<tr>
<td>33410 ML</td>
<td>33451 ML 33452 ML 33453 ML 33456 ML</td>
</tr>
</tbody>
</table>

CLICKLINE KELLY Dissecting and Grasping Forceps, long

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 DN</td>
<td>33251 DN 33252 DN 33253 DN 33256 DN</td>
</tr>
<tr>
<td>33310 DN</td>
<td>33351 DN 33352 DN 33353 DN 33356 DN</td>
</tr>
<tr>
<td>33410 DN</td>
<td>33451 DN 33452 DN 33453 DN 33456 DN</td>
</tr>
</tbody>
</table>

Dissecting and Grasping Forceps, “Dolphin Nose”

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 AF</td>
<td>33251 AF 33252 AF 33253 AF 33256 AF</td>
</tr>
<tr>
<td>33310 AF</td>
<td>33351 AF 33352 AF 33353 AF 33356 AF</td>
</tr>
<tr>
<td>33410 AF</td>
<td>33451 AF 33452 AF 33453 AF 33456 AF</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, atraumatic, fenestrated

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 DF</td>
<td>33251 DF 33252 DF 33253 DF 33256 DF</td>
</tr>
<tr>
<td>33310 DF</td>
<td>33351 DF 33352 DF 33353 DF 33356 DF</td>
</tr>
<tr>
<td>33410 DF</td>
<td>33451 DF 33452 DF 33453 DF 33456 DF</td>
</tr>
</tbody>
</table>

CLICKLINE Dissecting and Grasping Forceps, atraumatic

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 DF</td>
<td>33251 DF 33252 DF 33253 DF 33256 DF</td>
</tr>
<tr>
<td>33310 DF</td>
<td>33351 DF 33352 DF 33353 DF 33356 DF</td>
</tr>
<tr>
<td>33410 DF</td>
<td>33451 DF 33452 DF 33453 DF 33456 DF</td>
</tr>
</tbody>
</table>

Please note:
For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with insulated handles with connector pin for unipolar coagulation, are shown against the red background. The colour green indicates the inserts.
Dissecting and Grasping Forceps

CLICKLINE – rotational, can be dismantled, without connector pin for unipolar coagulation

Operating instrument, length 30, 36 and 43 cm, for use with trocars size 6 mm

Operating instrument, length 43 cm, for use with telescopes with inserted operating channel

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle 33132</th>
<th>Handle 33133</th>
<th>Handle 33141</th>
<th>Handle 33161</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Double-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 ML</td>
<td>33232 ML 33233 ML 33241 ML 33261 ML</td>
</tr>
<tr>
<td>33310 ML</td>
<td>33332 ML 33333 ML 33341 ML 33361 ML</td>
</tr>
<tr>
<td>33410 ML</td>
<td>33432 ML 33433 ML 33441 ML 33461 ML</td>
</tr>
</tbody>
</table>

CLICKLINE _KELLY Dissecting and Grasping Forceps_, long

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 DN</td>
<td>33232 DN 33233 DN 33241 DN 33261 DN</td>
</tr>
<tr>
<td>33310 DN</td>
<td>33332 DN 33333 DN 33341 DN 33361 DN</td>
</tr>
<tr>
<td>33410 DN</td>
<td>33432 DN 33433 DN 33441 DN 33461 DN</td>
</tr>
</tbody>
</table>

CLICKLINE Dissecting and Grasping Forceps, “Dolphin Nose”

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 AF</td>
<td>33232 AF 33233 AF 33241 AF 33261 AF</td>
</tr>
<tr>
<td>33310 AF</td>
<td>33332 AF 33333 AF 33341 AF 33361 AF</td>
</tr>
<tr>
<td>33410 AF</td>
<td>33432 AF 33433 AF 33441 AF 33461 AF</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, atraumatic, fenestrated

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 DF</td>
<td>33232 DF 33233 DF 33241 DF 33261 DF</td>
</tr>
<tr>
<td>33310 DF</td>
<td>33332 DF 33333 DF 33341 DF 33361 DF</td>
</tr>
<tr>
<td>33410 DF</td>
<td>33432 DF 33433 DF 33441 DF 33461 DF</td>
</tr>
</tbody>
</table>

CLICKLINE Dissecting and Grasping Forceps, atraumatic

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 AF</td>
<td>33232 AF 33233 AF 33241 AF 33261 AF</td>
</tr>
<tr>
<td>33310 AF</td>
<td>33332 AF 33333 AF 33341 AF 33361 AF</td>
</tr>
<tr>
<td>33410 AF</td>
<td>33432 AF 33433 AF 33441 AF 33461 AF</td>
</tr>
</tbody>
</table>

Please note:

For **CLICKLINE** instruments only the **individual component parts** are numbered. The catalog number for the **complete instrument** is not on the instrument. Instruments with **handles without connector** pin for unipolar coagulation are shown against the **blue** background. The colour **green** indicates the inserts.
Grasping Forceps

CLICKLINE – rotational, can be dismantled, insulated, with connector pin for unipolar coagulation

Operating instrument, length 30, 36 and 43 cm, for use with trocars size 6 mm

Operating instrument, length 43 cm, for use with telescopes with inserted operating channel

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle 33151</th>
<th>Handle 33152</th>
<th>Handle 33153</th>
<th>Handle 33156</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-action jaw

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 CC</td>
<td>33251 CC 33252 CC 33253 CC 33256 CC</td>
</tr>
<tr>
<td>33310 CC</td>
<td>33351 CC 33352 CC 33353 CC 33356 CC</td>
</tr>
<tr>
<td>33410 CC</td>
<td>33451 CC 33452 CC 33453 CC 33456 CC</td>
</tr>
</tbody>
</table>

CLICKLINE CROCE-OLMI Grasping Forceps, atraumatic, fenestrated, curved

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 ON</td>
<td>33251 ON 33252 ON 33253 ON 33256 ON</td>
</tr>
<tr>
<td>33310 ON</td>
<td>33351 ON 33352 ON 33353 ON 33356 ON</td>
</tr>
<tr>
<td>33410 ON</td>
<td>33451 ON 33452 ON 33453 ON 33456 ON</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, with especially fine atraumatic serration, fenestrated

Please note:

For **CLICKLINE** instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with insulated handles with connector pin for unipolar coagulation, are shown against the red background. The colour green indicates the inserts.
Grasping Forceps
CLICKLINE – rotational, can be dismantled, without connector pin for unipolar coagulation
Operating instrument, length 30, 36 and 43 cm, for use with trocars size 6 mm
Operating instrument, length 43 cm, for use with telescopes with inserted operating channel

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle 33162</th>
<th>Handle 33163</th>
<th>Handle 33141</th>
<th>Handle 33161</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-action jaw

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 CC</td>
<td>33262 CC 33263 CC 33241 CC 33261 CC</td>
</tr>
<tr>
<td>33310 CC</td>
<td>33362 CC 33363 CC 33341 CC 33361 CC</td>
</tr>
<tr>
<td>33410 CC</td>
<td>33462 CC 33463 CC 33441 CC 33461 CC</td>
</tr>
</tbody>
</table>

CLICKLINE CROCE-OLMI Grasping Forceps, atraumatic, fenestrated, curved

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33210 ON</td>
<td>33262 ON 33263 ON 33241 ON 33261 ON</td>
</tr>
<tr>
<td>33310 ON</td>
<td>33362 ON 33363 ON 33341 ON 33361 ON</td>
</tr>
<tr>
<td>33410 ON</td>
<td>33462 ON 33463 ON 33441 ON 33461 ON</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, with especially fine atraumatic serration, fenestrated

Please note:
For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with handles without connector pin for unipolar coagulation are shown against the blue background. The colour green indicates the inserts.
Scissors

CLICKLINE – rotational, can be dismantled, with connector pin for unipolar coagulation
Operating instrument, length 30, 36 and 43 cm, for use with trocars size 6 mm
Operating instrument, length 43 cm, for use with telescopes with inserted operating channel

<table>
<thead>
<tr>
<th>Working Length</th>
<th>New</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>34210 MS</td>
<td>34251 MS 34261 MS 34310 MS 34351 MS 34361 MS 34410 MS 34451 MS 34461 MS</td>
</tr>
</tbody>
</table>

CLICKLINE METZENBAUM Scissors, curved, length of blades 12 mm

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>34210 MA</td>
<td>34251 MA 34261 MA 34310 MA 34351 MA 34361 MA 34410 MA 34451 MA 34461 MA</td>
</tr>
</tbody>
</table>

CLICKLINE Scissors, with serrated jaws, curved, spoon blades, length of blades 17 mm

Please note:
For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with insulated handles with connector pin for unipolar coagulation, are shown against the red background, instruments with handles without connector pin for unipolar coagulation are shown against the blue background. The colour green indicates the inserts.
ROBI® Bipolar rotational Instruments

Size 5 mm
Operating instruments, length 36 cm, for use with trocars size 6 mm

<table>
<thead>
<tr>
<th>Outer Sheath</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length 36 cm</td>
<td>38151</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number of the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>38610 MD</td>
<td>ROBI® KELLY Grasping Forceps, CLERMONT-FERRAND model, with connector pin for bipolar coagulation, especially suitable for dissection, double-action jaws</td>
</tr>
<tr>
<td>38610 ON</td>
<td>ROBI® Grasping Forceps, CLERMONT-FERRAND model, with connector pin for bipolar coagulation, with especially fine atraumatic serration, fenestrated, double action jaws</td>
</tr>
<tr>
<td>38610 MW</td>
<td>ROBI® Scissors, CLERMONT-FERRAND model, with connector pin for bipolar coagulation, curved blades, double-action jaws</td>
</tr>
</tbody>
</table>
Surgical Sponge Holder
Size 5 mm
 trocar size 6 mm

Surgical Sponge Holder, self-retaining, size 5 mm, length 30 cm
including:
Handle
Outer Sheath, insulated
Sponge Holder Insert

Irrigation and Suction Tubes
size 5 mm,
trocars size 6 mm

Distal Tip	Working Length	Instrument No.	Description
36 cm	37360 LH	Cannula, with lateral holes	
43 cm	37460 LH		
36 cm	37360 SC	Cannula	

Handle with Two-Way Stopcock, for suction and irrigation, autoclavable, for use with suction and irrigation tubes sizes 3 and 5 mm

Knot Tier
size 5 mm
 trocar size 6 mm

KÖCKERLING Knot Tier, for extracorporeal knotting, size 5 mm, length 36 cm
KOH Macro Needle Holder

dismantable

KOH Macro Needle Holder, size 5 mm, dismantable, including:
- Handle
- Outer Sheath
- Working Insert

Cleaning and sterilization are gaining increasing importance for KARL STORZ as a manufacturer of surgical instruments.

Similar to all our surgical instruments, the cleaning and hygiene of our needle holders also play an important role. Our KOH macro needle holders feature consistent effectiveness and precision, with significantly improved cleaning results achieved by dismantling the instrument. The handle, outer sheath and inner part can be cleaned and sterilized separately for perfect results.

This unique reusable three-piece design offers the user the following benefits:
- Can be disassembled into three separate components
- Fully autoclavable
- Cleaning adaptor
- Choice of six different handles and three different working inserts
- With tungsten carbide inserts
- Environmentally correct: In the event of damage, only the component with the defect needs to be replaced
- User-friendly and ergonomic handling
Handles and Outer Tubes
KOH Macro Needle Holders, dismantable

Handles axial and pistol grip with disengageable ratchet

30173 AR Handle, axial, with disengageable ratchet, ratchet release on the right side
30173 AL Handle, axial, with disengageable ratchet, ratchet release on the left side
30173 AO Handle, axial, with disengageable ratchet, ratchet release on top

30173 PR Handle, pistol grip, with disengageable ratchet, ratchet release on the right side
30173 PL Handle, pistol grip, with disengageable ratchet, ratchet release on the left side
30173 PO Handle, pistol grip, with disengageable ratchet, ratchet release on top

Metal Outer Sheath
Size 5 mm

30173 A with Luer-Lock connector for cleaning

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 A</td>
<td>33 cm</td>
</tr>
<tr>
<td>30178 A</td>
<td>43 cm</td>
</tr>
</tbody>
</table>
KOH Macro Needle Holder
dismantable

Size 5 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33 cm</td>
<td>30173 AR</td>
<td>30173 AL</td>
<td>30173 AO</td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 L</td>
<td>30173 LAR</td>
<td>30173 LAL</td>
<td>30173 LAO</td>
</tr>
<tr>
<td>30178 L</td>
<td>30178 LAR</td>
<td>30178 LAL</td>
<td>30178 LAO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to right, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 F</td>
<td>30173 FAR</td>
<td>30173 FAL</td>
<td>30173 FAO</td>
</tr>
<tr>
<td>30178 F</td>
<td>30178 FAR</td>
<td>30178 FAL</td>
<td>30178 FAO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, straight jaws, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 G</td>
<td>30173 GAR</td>
<td>30173 GAL</td>
<td>30173 GAO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, straight jaws
KOH Macro Needle Holder

dismantable

Size 5 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 cm</td>
<td>30173 PR</td>
</tr>
<tr>
<td></td>
<td>30173 PL</td>
</tr>
<tr>
<td></td>
<td>30173 PO</td>
</tr>
<tr>
<td>43 cm</td>
<td>30173 RPR</td>
</tr>
<tr>
<td></td>
<td>30173 RPL</td>
</tr>
<tr>
<td></td>
<td>30173 RPO</td>
</tr>
<tr>
<td></td>
<td>30178 RPR</td>
</tr>
<tr>
<td></td>
<td>30178 RPL</td>
</tr>
<tr>
<td></td>
<td>30178 RPO</td>
</tr>
</tbody>
</table>

Single-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 R</td>
<td>30173 RPR 30173 RPL 30173 RPO</td>
</tr>
<tr>
<td>30178 R</td>
<td>30178 RPR 30178 RPL 30178 RPO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to right, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 L</td>
<td>30173 LPR 30173 LPL 30173 LPO</td>
</tr>
<tr>
<td>30178 L</td>
<td>30178 LPR 30178 LPL 30178 LPO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to left, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 F</td>
<td>30173 FPR 30173 FPL 30173 FPO</td>
</tr>
<tr>
<td>30178 F</td>
<td>30178 FPR 30178 FPL 30178 FPO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, straight jaws, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 G</td>
<td>30173 GPR 30173 GPL 30173 GPO</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, straight jaws
Mobile Equipment Cart

Monitor:
- 9627 NB: 27" FULL HD Monitor

Camera System:
- TC 200 DE: IMAGE1 S CONNECT, connect module
- TC 300: IMAGE1 S H3-LINK, link module
- TH 100: IMAGE1 S H3-Z
 - Three-Chip FULL HD Camera Head

Light Source:
- 20 1331 01-1: XENON 300 SCB Cold Light Fountain
- 495 NCSC: Fiber Optic Light Cable

HF-Device:
- 20 5352 01-125: AUTOCON® II 400
- 20 0178 30: Two-Pedal Footswitch

Insufflation:
- UI 400 S1: ENDOFLATOR® 40
- UP 501 S3: S-PILOT™

Pump System:
- 26 3311 01-1: HAMOU® ENDOMAT®

Equipment Cart:
- UG 120: COR™ Equipment Cart, narrow, high
- UG 500: Monitor Holder
- UG 609: Bottle Holder, for CO2-Bottles
- 29005 DFH: Foot-Pedal Holder, for Two- and Three-Pedal Footswitches
- UG 310: Isolation Transformer, 200V–240V
- UG 410: Earth Leakage Monitor, 200V–240V

Additional for documentation purposes:
- WD 250: AIDA® with SmartScreen®
- TC 009: USB Adaptor, for ACC 1 and ACC 2
IMAGE1 S Camera System

Economical and future-proof
- Modular concept for flexible, rigid and 3D endoscopy as well as new technologies
- Forward and backward compatibility with video endoscopes and FULL HD camera heads

Innovative Design
- Dashboard: Complete overview with intuitive menu guidance
- Live menu: User-friendly and customizable
- Intelligent icons: Graphic representation changes when settings of connected devices or the entire system are adjusted

Sustainable investment
- Sustainable investment
- Compatible with all light sources

- Automatic light source control
- Side-by-side view: Parallel display of standard image and the Visualization mode
- Multiple source control: IMAGE1 S allows the simultaneous display, processing and documentation of image information from two connected image sources, e.g., for hybrid operations

Dashboard

Live menu

Intelligent icons

Side-by-side view: Parallel display of standard image and Visualization mode
IMAGE1 S Camera System

Brilliant Imaging
- Clear and razor-sharp endoscopic images in FULL HD
- Natural color rendition

- Reflection is minimized
- Multiple IMAGE1 S technologies for homogeneous illumination, contrast enhancement and color shifting

FULL HD image

CLARA

FULL HD image

CHROMA

FULL HD image

SPECTRA A*

FULL HD image

SPECTRA B**

*SPECTRA A: Not for sale in the U.S.
**SPECTRA B: Not for sale in the U.S.
IMAGE1 S Camera System

TC 200EN

TC 200EN* **IMAGE1 S CONNECT**, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

- **Mains Cord**, length 300 cm
- **DVI-D Connecting Cable**, length 300 cm
- **SCB Connecting Cable**, length 100 cm
- **USB Flash Drive**, 32 GB, USB silicone keyboard, with touchpad, US

*Available in the following languages: DE, ES, FR, IT, PT, RU

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 200EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD video outputs</td>
<td>2x DVI-D</td>
</tr>
<tr>
<td>Format signal outputs</td>
<td>1920 x 1080p, 50/60 Hz</td>
</tr>
<tr>
<td>LINK video inputs</td>
<td>3x</td>
</tr>
<tr>
<td>USB interface</td>
<td>4x USB, (2x front, 2x rear)</td>
</tr>
<tr>
<td>SCB interface</td>
<td>2x 6-pin mini-DIN</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>2.1 kg</td>
</tr>
</tbody>
</table>

For use with IMAGE1 S

IMAGE1 S CONNECT Module TC 200EN

TC 300

TC 300 **IMAGE1 S H3-LINK**, link module, for use with IMAGE1 FULL HD three-chip camera heads, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with **IMAGE1 S CONNECT TC 200EN** including:

- **Mains Cord**, length 300 cm
- **Link Cable**, length 20 cm

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 300 (H3-Link)</th>
</tr>
</thead>
</table>
| Supported camera heads/video endoscopes | TH 100, TH 101, TH 102, TH 103, TH 104, TH 106 (fully compatible with IMAGE1 S)
| | 22220055-3, 22220056-3, 22220053-3, 22220060-3, 22220061-3, 22220054-3, 22220085-3 (compatible without IMAGE1 S technologies CLARA, CHROMA, SPECTRA*) |
| LINK video outputs | 1x |
| Power supply | 100–120 VAC/200–240 VAC |
| Power frequency | 50/60 Hz |
| Protection class | I, CF-Defib |
| Dimensions w x h x d | 305 x 54 x 320 mm |
| Weight | 1.86 kg |

SPECTRA A: Not for sale in the U.S.

SPECTRA B: Not for sale in the U.S.
Laparoscopic Repair of Incisional Hernias

IMAGE1 S Camera Heads

For use with IMAGE1 S Camera System
IMAGE1 S CONNECT Module TC 200EN, IMAGE1 S H3-LINK Module TC 300
and with all IMAGE1 HUB™ HD Camera Control Units

TH 100

IMAGE1 S H3-Z Three-Chip FULL HD Camera Head, 50/60 Hz, IMAGE1 S compatible, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length f = 15–31 mm (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>270 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, f = 15–31 mm (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

TH 104

IMAGE1 S H3-ZA Three-Chip FULL HD Camera Head, 50/60 Hz, IMAGE1 S compatible, autoclavable, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length f = 15–31 mm (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 104</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, f = 15–31 mm (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Monitors

9619 NB

19" HD Monitor,
color systems PAL/NTSC, max. screen resolution 1280 x 1024, image format 4:3, power supply 100–240 VAC, 50/60 Hz, wall-mounted with VESA 100 adaption, including:
External 24 VDC Power Supply
Mains Cord

9826 NB

26" FULL HD Monitor,
wall-mounted with VESA 100 adaption, color systems PAL/NTSC, max. screen resolution 1920 x 1080, image format 16:9, power supply 100–240 VAC, 50/60 Hz including:
External 24 VDC Power Supply
Mains Cord
Monitors

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th></th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall-mounted</td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
<tr>
<td>with VESA 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>adaption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs:</td>
<td>DVI-D ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fibre Optic –</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3G-SDI –</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>RGBS (VGA) ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>S-Video ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Composite/FBAS ●</td>
<td>●</td>
</tr>
<tr>
<td>Outputs:</td>
<td>DVI-D ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>S-Video ●</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Composite/FBAS ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>RGBS (VGA) ●</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3G-SDI –</td>
<td>●</td>
</tr>
<tr>
<td>Signal Format</td>
<td>4:3 ●</td>
<td>●</td>
</tr>
<tr>
<td>Display:</td>
<td>5:4 ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>16:9 ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Picture-in-Picture ●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>PAL/NTSC compatible ●</td>
<td>●</td>
</tr>
</tbody>
</table>

Optional accessories:

- 9826 SF **Pedestal**, for monitor 9826 NB
- 9626 SF **Pedestal**, for monitor 9619 NB

Specifications:

<table>
<thead>
<tr>
<th>KARL STORZ HD and FULL HD Monitors</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop with pedestal</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>Product no.</td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
<tr>
<td>Brightness</td>
<td>200 cd/m² (type)</td>
<td>500 cd/m² (type)</td>
</tr>
<tr>
<td>Max. viewing angle</td>
<td>178° vertical</td>
<td>178° vertical</td>
</tr>
<tr>
<td>Pixel distance</td>
<td>0.29 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Reaction time</td>
<td>5 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>700:1</td>
<td>1400:1</td>
</tr>
<tr>
<td>Mount</td>
<td>100 mm VESA</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Weight</td>
<td>7.6 kg</td>
<td>7.7 kg</td>
</tr>
<tr>
<td>Rated power</td>
<td>28 W</td>
<td>72 W</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0–40°C</td>
<td>5–35°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-20–60°C</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Rel. humidity</td>
<td>max. 85%</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>469.5 x 416 x 75.5 mm</td>
<td>643 x 396 x 87 mm</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Certified to</td>
<td>EN 60601-1,</td>
<td>EN 60601-1,</td>
</tr>
<tr>
<td></td>
<td>protection class IPX0</td>
<td>protection class IPX0</td>
</tr>
<tr>
<td></td>
<td>MDD93/42/EEC,</td>
<td>UL 60601-1,</td>
</tr>
<tr>
<td></td>
<td>protection class IPX2</td>
<td>MDD93/42/EEC,</td>
</tr>
</tbody>
</table>
Cold Light Fountains and Accessories

For use with telescopes, diameter 10 mm:
495 NCSC Fiber Optic Light Cable,
with straight connector, extremely heat-resistant,
safety lock, diameter 4.8 mm, length 250 cm

For use with telescopes, diameter 5 mm:
495 NAC Fiber Optic Light Cable,
with straight connector, extremely heat-resistant,
with safety lock, increased light transmission,
diameter 3.5 mm, length 230 cm,
can be used for ICG applications

Cold Light Fountain XENON 300 SCB

20133027 Cold Light Fountain XENON 300 SCB
with built-in antifog air-pump, and integrated
KARL STORZ Communication Bus System SCB
power supply:
100–125 VAC/220–240 VAC, 50/60 Hz
including:
Mains Cord
SCB Connecting Cable, length 100 cm
Spare Lamp Module XENON
with heat sink, 300 watt, 15 volt

20133028 XENON Spare Lamp, only,
300 watt, 15 volt

Cold Light Fountain XENON NOVA® 300

20134001 Cold Light Fountain XENON NOVA® 300,
power supply:
100–125 VAC/220–240 VAC, 50/60 Hz
including:
Mains Cord

20133028 XENON Spare Lamp, only,
300 watt, 15 volt
THERMOFLATOR® with KARL STORZ SCB
with High Flow Insufflation (30 l/min.)

26 4320 08-1 THERMOFLATOR® SCB
including:
- THERMOFLATOR® with KARL STORZ SCB
 power supply 100–240 VAC, 50/60 Hz
- Mains Cord
- OPTITHERM® Heating Element, sterilizable
- Silicone Tubing Set, sterilizable
- Universal Wrench
- SCB Connecting Cable, length 100 cm
- CO₂/N₂O Gas Filter, sterile,
 for single use, package of 10

Subject to the customer's application-specific requirements additional accessories must be ordered separately.

* This product is marketed by mtp.
For additional information, please apply to:

*mtp medical technical promotion gmbh,
Take-Off GewerbePark 46,
78579 Neuhausen ob Eck, Germany

HAMOU® ENDOMAT® with KARL STORZ SCB
Suction and Irrigation System

26331101-1 HAMOU® ENDOMAT® SCB,
power supply 100–240 VAC, 50/60 Hz
including:
- Mains Cord
- 5x HYST Tubing Set*, for single use
- 5x LAP Tubing Set*, for single use
- SCB Connecting Cable, length 100 cm
- VACUsafe Promotion Pack Suction*, 2 l

Subject to the customer's application-specific requirements additional accessories must be ordered separately.

* This product is marketed by mtp.
For additional information, please apply to:

*mtp medical technical promotion gmbh,
Take-Off GewerbePark 46,
78579 Neuhausen ob Eck, Germany
Data Management and Documentation
KARL STORZ AIDA® – Exceptional documentation

The name AIDA stands for the comprehensive implementation of all documentation requirements arising in surgical procedures: A tailored solution that flexibly adapts to the needs of every specialty and thereby allows for the greatest degree of customization.

This customization is achieved in accordance with existing clinical standards to guarantee a reliable and safe solution. Proven functionalities merge with the latest trends and developments in medicine to create a fully new documentation experience – AIDA.

AIDA seamlessly integrates into existing infrastructures and exchanges data with other systems using common standard interfaces.

WD 200-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, power supply 100–240 VAC, 50/60 Hz
including:
- USB Silicone Keyboard, with touchpad
- ACC Connecting Cable
- DVI Connecting Cable, length 200 cm
- HDMI-DVI Cable, length 200 cm
- Mains Cord, length 300 cm

WD 250-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, including SMARTSCREEN® (touch screen), power supply 100–240 VAC, 50/60 Hz
including:
- USB Silicone Keyboard, with touchpad
- ACC Connecting Cable
- DVI Connecting Cable, length 200 cm
- HDMI-DVI Cable, length 200 cm
- Mains Cord, length 300 cm

*XX Please indicate the relevant country code (DE, EN, ES, FR, IT, PT, RU) when placing your order.
Workflow-oriented use

Patient
Entering patient data has never been this easy. AIDA seamlessly integrates into the existing infrastructure such as HIS and PACS. Data can be entered manually or via a DICOM worklist. All important patient information is just a click away.

Checklist
Central administration and documentation of time-out. The checklist simplifies the documentation of all critical steps in accordance with clinical standards. All checklists can be adapted to individual needs for sustainably increasing patient safety.

Record
High-quality documentation, with still images and videos being recorded in FULL HD and 3D. The Dual Capture function allows for the parallel (synchronous or independent) recording of two sources. All recorded media can be marked for further processing with just one click.

Edit
With the Edit module, simple adjustments to recorded still images and videos can be very rapidly completed. Recordings can be quickly optimized and then directly placed in the report. In addition, freeze frames can be cut out of videos and edited and saved. Existing markings from the Record module can be used for quick selection.

Complete
Completing a procedure has never been easier. AIDA offers a large selection of storage locations. The data exported to each storage location can be defined. The Intelligent Export Manager (IEM) then carries out the export in the background. To prevent data loss, the system keeps the data until they have been successfully exported.

Reference
All important patient information is always available and easy to access. Completed procedures including all information, still images, videos, and the checklist report can be easily retrieved from the Reference module.
with the compliments of
KARL STORZ — ENDOSKOPE