THE METHOD OF MEDICAL THORACOSCOPY

2nd Edition

Ralf HEINE, MD
Jan Hendrik BARTELS, MD
Christian WEISS

Medical Clinic III – Pneumonology, Hematology-Oncology and Palliative Medicine
Hospital of St. Elisabeth and St. Barbara
Halle (Saale), Germany
Table of Contents

1. **Historical Background** .. 6
2. **Indications and Contraindications for Thoracoscopy** 6
 2.1 Indications .. 6
 2.2 Contraindications .. 7
3. **Anesthesia** ... 7
4. **Preparations for Thoracoscopy** 8
 4.1 Imaging Studies ... 8
 4.2 Diagnostic Pneumothorax .. 8
 4.3 Premedication .. 10
 4.3.1 The Evening Before the Procedure 10
 4.3.2 The Day of the Procedure 10
5. **Technique of Thoracoscopy** .. 11
 5.1 Procedure Room .. 11
 5.2 Instruments .. 11
 5.3 Positioning the Patient .. 11
 5.4 Monitoring and Other Measures during the Procedure 12
 5.5 Patient Preparation after Positioning 12
 5.6 Selection of the Entry Site .. 12
 5.7 Local Anesthesia .. 12
 5.8 Conscious Sedation .. 13
 5.9 Trocar Insertion .. 13
 5.10 Inspection of the Thoracic Cavity 14
 5.11 Thoracoscopic Biopsy and Lysis of Adhesions 16
 5.12 Talc Pleurodesis .. 17
 5.13 Concluding the Procedure 18
6. **Management after Thoracoscopy** 19
7. **Complications** ... 19
8. **Summary** .. 19

References ... 20

Instrument Set for Medical Thoracoscopy 22
The Method of Medical Thoracoscopy

1 Historical Background

The idea of using optical instruments to enter and examine body cavities that cannot be accessed through a natural orifice dates back to the Dresden physician G. Kelling (1866–945). As early as 1902, he published a report detailing how he was able to perform 'coelioscopy' in a dog after first insufflating air into the abdominal cavity. His optical system consisted of a cystoscope like the one previously developed by M. Nitze (1848–1906).

Diagnostic thoracoscopy was first performed in human patients in 1910 by the Swedish internist H. C. Jacobaeus (1879–1937). The creation of a pneumothorax did not pose a new challenge for Jacobaeus, as C. Forlanini (1847–1918) had already developed the procedure in the late 1800s for the collapse therapy to treat tuberculosis. Jacobaeus advanced the capabilities of diagnostic thoracoscopy by the introduction of thoracocautery. This technique, which became important in the treatment of tuberculosis, used electrocautery for the lysis of pleural adhesions. By the end of the 1950s, thoracoscopy with thoracocautery was widely practiced in the collapse therapy of tuberculosis. Only a few clinicians utilized the diagnostic potential of thoracoscopy during that time; as a result, the diagnostic capabilities of thoracoscopy were largely forgotten.

The fascination of being able to look into the chest led R. Korbsch to state in 1927 that 'in vivo pathology' could be accomplished if gross visual findings could be supplemented by the histologic evaluation of biopsy specimens. The Viennese physician A. Sattler rediscovered the diagnostic value of thoracoscopy in the early 1960s. He performed thoracoscopies in several thousand patients, and we must credit him with making pleural biopsy practical for clinical use. He also performed thoracoscopy for therapeutic purposes and described life-saving emergency endoscopies for the treatment of hemotherax.

With the advent of video-assisted thoracoscopy in the 1980s, it also became possible to use thoracoscopy for surgical indications. Since then, video-assisted thoracic surgery (VATS) has become an established part of the thoracic surgical repertoire. At the same time, video-assisted thoracoscopy continues to be a mainstay in the medical diagnosis of diseases of the pleura, lung, and mediastinum.

2 Indications and Contraindications for Thoracoscopy

2.1 Indications

The range of indications for medical thoracoscopy has changed significantly in recent decades. The standard indications for medical thoracoscopy in the 1980s were unexplained pleural effusion, peripheral lung lesions, lesions near the chest wall, and mediastinal disease.

Today, tumors of the pleura, mediastinum and peripheral lung are diagnosed by CT- or ultrasound-guided biopsy. Generally these cases are not investigated by thoracoscopy. Interstitial lung diseases and peripheral lung tumors that cannot be diagnosed by bronchoscopic tissue sampling are a domain of thoroscopic surgery. VATS can provide access for wedge resections that yield adequate material for histologic analysis. It is also used for the complete removal of solid peripheral lung lesions and isolated pleural tumors.

Diagnostic Indications for Thoracoscopy:

- Pleural effusions of unknown origin.
- Pleural effusions with negative cytology in lung cancer to exclude M1a disease (pleural carcinomatosis).
- Staging and histologic confirmation of pleural mesothelioma.
- Pneumothorax (prior to chest tube placement if indicated).
- Thoracoscopy in surgical cavities for a suspected tumor recurrence or specific infection.

In most cases thoracoscopy is performed during the investigation of pleural exudates that are not explained by cytologic examination. Interstitial lung diseases may be an indication for medical thoracoscopy in exceptional cases. In this application tissue is sampled from the periphery of the lung with a biopsy forceps. Generally speaking, however, a thoracoscopic wedge excision would be preferred for this indication.
In patients with a pneumothorax, thoracoscopy can supply vital information that is helpful in directing further management. It can be used to inspect the pleural cavity before the placement of a chest tube.16

Therapeutic Indications for Thoracoscopy:

- Talc pleurodesis for rapidly recurring malignant effusions and for transudates unresponsive to medical therapy. In selected cases, the procedure may also be used in the treatment of chylothorax and refractory exudative inflammatory pleural effusions.15,29
- Talc pleurodesis for recurrent pneumothorax.3, 20
- Pleural empyema and complicated parapneumonic effusions, where thoracoscopy can be used to evacuate the collection, lyse adhesions, and place a chest tube under vision.5, 12, 22, 25, 30

Persistent recurrence of pneumothorax with a chest tube in place is a definite indication for video-assisted thoracic surgery (VATS), which will also establish access for repairing the existing air leak.

Pleural empyema is a potential indication for medical thoracoscopy only if it is in an exudative or fibropurulent stage. Stage III disease is an indication for thoracic surgical intervention.

Thoracoscopy for pneumothorax as well as pleural empyema requires close interdisciplinary cooperation between pneumonology and thoracic surgery in developing a treatment strategy.

2.2 Contraindications

Thoracoscopy is generally well tolerated. We believe that it is contraindicated by conditions in which the creation of a diagnostic pneumothorax would exacerbate existing functional disorders.8, 19 In patients with large pleural effusions that may cause respiratory insufficiency, however, functional status can be improved by aspirating the effusion during the procedure.

Contraindications to Thoracoscopy:

- Frank cardiac insufficiency.
- Frank pulmonary insufficiency.
- Coagulation disorder (Quick value < 60%, platelets < 80,000 Gpt/L).
- Dual antiplatelet therapy with aspirin and clopidogrel. A daily aspirin dose of 100 mg is not a contraindication in itself. Clopidogrel should be stopped approximately 1 week before the procedure.
- Treatment with dabigatran (Pradaxa®), apixaban (Ellquis®), or rivaroxaban (Xarelto®). Cessation of these drugs should follow current recommendations.
- Anemia (Hb < 6 mmol/L).
- Severe kyphoscoliosis.
- Myocardial infarction during the previous 6 weeks.

Anesthesia

Medical thoracoscopy is usually performed under local anesthesia, which should be combined with adequate conscious sedation. It is recommended that conscious sedation and patient monitoring during the procedure be conducted by an anesthesiologist or a physician experienced in conscious sedation who can quickly recognize and manage any threatening situations that may arise.

General anesthesia with muscle relaxation and intubation with a double-lumen endotracheal tube are rarely necessary for medical thoracoscopy and are generally reserved for children and uncooperative patients.
Preparations for Thoracoscopy

4.1 Imaging Studies

Preprocedure studies for thoracoscopy should always include PA and lateral chest radiographs. Thoracic computed tomography may yield important additional information, depending on the clinical question.

Thoracic ultrasonography is the method of choice for locating the optimal entry site. When pleural effusion is present, ultrasound can accurately determine whether there is sufficient space between the lung and chest wall to allow safe insertion of the trocar (Fig. 1). Ultrasound can also confirm the absence of chest-wall tumor at the trocar insertion site (Fig. 2). This ensures that the trocar will not penetrate metastases in the chest wall. Thoracic ultrasound also supplies information on the internal structure of the pleural effusion, including the presence of adhesions and the detection of loculations (Fig. 3). Especially in patients with small encapsulated pleural effusions, thoracic ultrasound can provide information on the size of the presumptive space available for thoracoscopy.

It is good practice to determine the optimal entry site with the patient in the lateral decubitus position. In patients with larger effusions, the potential entry site can also be determined and marked with bedside ultrasound.

4.2 Diagnostic Pneumothorax

Basically there is no need to create a diagnostic pneumothorax in patients with a large pleural effusion. When thoracoscopy is used in the investigation of smaller pleural effusions (Fig. 4) or lesions close to the chest wall, it is advisable to create a diagnostic pneumothorax. Once the pneumothorax has been established, it is easily determined whether there is sufficient space between the chest wall and lung surface to allow for safe intrathoracic access. If a diagnostic pneumothorax is not created, there is a risk of accidentally inserting the trocar into the lung if adhesions are present between the lung and chest wall.
The Method of Medical Thoracoscopy

The pneumothorax should be established immediately prior to thoracoscopy. The patient is positioned on the examination table with the healthy side down. After sterile skin preparation and draping of the affected side, local anesthesia with 10 mL of 1% lidocaine is performed in the fifth intercostal space in the midclavicular line or at another puncture site previously identified by ultrasound. When local anesthesia is completed, it should be determined whether the lung is broadly adherent to the chest wall. This is done by filling the needle hub with local anesthetic solution and then carefully advancing the needle through the chest wall. When the needle tip penetrates the parietal pleura and enters the pleural space, the fluid in the hub will be sucked into the chest by the negative intrathoracic pressure. Generally, we leave the anesthesia needle in place for a short time so that atmospheric air can enter the pleural space through the needle (Figs. 5, 6).

With the local anesthesia needle removed, a stab incision is made and a Veress needle is introduced through the incision (Fig. 7). It is connected to a CO₂ insufflation pump (KARL STORZ Electronic Endoflator, Figs. 8, 9), which provides for microprocessor-controlled measurement and regulation of insufflation pressure and flow rate. A maximum intrapleural pressure limit of 2 mmHg should be set on the insufflation pump. The flow rate for CO₂ insufflation should be in the range of 0.5 to 1 L/min. The Electronic Endoflator also gives a numerical readout of the insufflated CO₂ volume.

When the Veress needle has penetrated the chest wall, the insufflator will give a negative pressure reading of -4 to -6 mmHg. If the needle tip is in the lung, the reading will fluctuate around zero. If this does not occur, it means that the needle is in the chest wall or that the pleural layers are obliterated. In this case we recommend moving to a different entry site because the pleural adhesion may be a local process confined to the initial port.

5 Fluid in the needle hub just before insertion through the parietal pleura.

6 When the needle penetrates the parietal pleura, the fluid in the hub is aspirated into the pleural space by the negative intrathoracic pressure.

7 Veress needle with a spring-loaded blunt inner cannula and Luer Lock adapter, length 10 cm.

8 Endoflator with initial settings (2 mmHg = upper limit of intrapleural pressure, 1.0 L/min = insufflation flow rate, 0.0 L = insufflated gas volume) and display during CO₂ insufflation (inset, Fig. 9: -1 mmHg = current intrapleural pressure, 0.5 L/min = current flow rate, 0.3 L = gas volume already insufflated).
When a negative pressure reading is obtained, 100 mL of CO₂ is insufflated initially into the pleural space. If the pressure remains negative, the insufflation may be continued. During this time the Endoflator will give an intermittent reading of the current intrapleural pressure. If the pressure exceeds the maximum preset pressure level, CO₂ insufflation will stop automatically.

When CO₂ insufflation under fluoroscopic guidance. The patient lies on his side under the fluoroscope. The tip of the Veress needle (1) is intrathoracic. At the time the image was taken, 800 mL of gas had already been insufflated. The size of the pneumothorax (2) allows for safe trocar insertion. The lung (3) is almost fully collapsed. Sufficient space is available between the chest wall and lung surface. The diaphragm (4) is clearly visible in the caudal part of the field.

Occasionally, fresh pleural adhesions can be lysed by applying a slight overpressure (2 mmHg). A total of 600 to 800 mL of CO₂ should be insufflated into the chest cavity. We recommend using a C-arm fluoroscope to monitor the insufflation process. This allows the operator to track the progression of the diagnostic pneumothorax and see whether enough space has been established between the chest wall and visceral pleura to permit safe trocar insertion for thoracoscopy (Fig. 10). Alternatively, the insufflation can be monitored by chest radiography in the lateral position if a C-arm fluoroscope is not available (Figs. 11, 12).

Carbon dioxide insufflation is recommended for creating the pneumothorax because if a gas embolism should occur as a result of visceral pleural injury, the CO₂ will be quickly reabsorbed. This minimizes the risk to the patient. In cases where the pneumothorax is created the day before the examination, CO₂ should not be used because generally it will be completely absorbed by the scheduled procedure time on the following day.

4.3 Premedication

4.3.1 The Evening Before the Procedure

Generally there is no need to premedicate patients on the evening before the procedure. Very anxious patients may take 5 mg of midazolam (Dormicum®) orally at night.

4.3.2 The Day of the Procedure

Approximately 1 hour before the start of the procedure, the patient should be given an oral sedative such as midazolam (Dormicum®, 2.5–5 mg). If an anesthesiologist will be present during the procedure, he or she should determine the premedication.

Chest radiograph of a diagnostic pneumothorax.

Chest radiograph in right lateral decubitus shows a left seropneumothorax and identifies a safe entry site for thoracoscopy.
Technique of Thoracoscopy

5.1 Procedure Room
Thoracoscopy should be performed in an operating room under aseptic conditions (as recommended by the German Robert Koch Institute).

5.2 Instruments
The following instrument set is required for thoracoscopy:

- Rigid thoracoscope (4-mm diameter, 30° HOPKINS® endoscope)
- Biopsy forceps*
- Suction tube*
- Powder dispenser*
- Dissecting electrode*
- Palpation probe
- Scalpel
- 2 flexible 6-mm trocars
- Tissue forceps
- Anatomical forceps
- Blunt scissors
- Suture material
- Needle holder
- 2 x 10-mL syringes with 1% lidocaine and hypodermic needle

*) compatible for use with the rigid thoracoscope

Fig. 13 shows the instrument stand ready for use.

5.3 Positioning the Patient
A rotating, tiltable operating table is essential for the optimum performance of thoracoscopy. The table should be fluoroscopy-compatible.

The patient is positioned in lateral decubitus with the healthy side down and padding beneath that side. An alternative option to padding the healthy side is to tilt the operating table at the thoracic level. The goal is to spread the ribs on the affected side as widely as possible by optimum positioning.

The patient’s arms are secured on arm rests to allow free access to the operative site. Anterior and posterior pelvic rests help to stabilize the position. During positioning, an electrode should be taped to the patient’s thigh to allow for the use of electrocautery devices, should they become necessary. The operator should make sure that the patient is lying in a comfortable position (Figs. 14, 15).

Fig. 14 Patient positioning. The position is stabilized with pelvic and arm rests. A pelvic strap has been added for this patient. The entry site for thoracoscopy was previously identified sonographically and marked on the skin. ECG leads, a pulse oximeter sensor, and blood-pressure cuff have been placed.

Fig. 15 Posterior pelvic rest
5.4 Monitoring and Other Measures during the Procedure

Oxygen saturation is continuously monitored by pulse oximetry throughout the procedure. An ECG trace should be recorded to monitor cardiac rhythm, and blood-pressure readings should be taken at 5-minute intervals. Oxygen is administered by oronasal mask at a rate of 3–4 L/min. A secure IV line (20-gauge indwelling venous cannula) is placed for administering medications during the procedure.

5.5 Patient Preparation after Positioning

When the patient has been positioned, a sterile skin preparation is carried out around the proposed thoracoscopy site. Then the patient is completely covered with sterile drapes, leaving an approximately 30 x 30-cm field exposed for trocar insertion (Fig. 16).

5.6 Selection of the Entry Site

The selected entry site should give optimum access to the pleural lesion requiring biopsy. In patients with a large pleural effusion, the best entry site is determined by ultrasonography (Section 4.1). The effusion volume at the proposed site should be sufficient to allow safe trocar insertion. In patients with an encapsulated pleural effusion, an analogous technique is used to locate the site that offers sufficient clearance between the lung and chest wall. In patients with little or no pleural effusion or if a pneumothorax is present, the midaxillary line at the level of the fifth intercostal space is particularly favorable for obtaining a comprehensive view of the pleural cavity. The preliminary creation of a pneumothorax will enhance safety and facilitate the procedure.

5.7 Local Anesthesia

Local anesthesia is administered in layers by the intra- and subcutaneous injection of 1% lidocaine over an area of 2–3 cm within the intercostal space. Then the cranial and caudal rib margins are located, and depots of local anesthetic are placed along the rib margins bordering the intercostal space. Repeated aspirations are done to ensure that the needle does not enter a vessel. Next, local anesthetic depots are injected into the muscles and at the subpleural level. Air will be aspirated when the needle has pierced the costal pleura. At that point the needle is withdrawn with continuous aspiration until air is no longer obtained. This indicates that the needle tip is at the immediate subpleural level, and an additional depot of 3–4 mL lidocaine is placed in that region.

Optimal local anesthesia is essential for a painless examination!
5.8 Conscious Sedation

Conscious sedation should be administered by a physician with comprehensive experience in that area. At our center, this responsibility is assumed by an anesthesiologist. The operator performing the thoracoscopy should not also be responsible for conscious sedation, so that he or she can devote full attention to the procedure. We recommend a titrated dose of midazolam and piritramide for conscious sedation, starting with an initial i.v. dose of 2–3 mg midazolam and 5 mg piritramide. An alternative analgesic is ketamine. Also, propofol (depending on response) may be given in combination with an analgesic.28

5.9 Trocar Insertion

An approximately 8-mm skin incision is made along the intercostal space, and the chest is entered by blunt dissection with a scissors (Fig. 17). When the chest wall has been perforated, a flexible 6-mm trocar is inserted into the thoracic cavity with a corkscrew motion (Fig. 18). A whistling sound will generally be heard when the stylet is removed, confirming correct intrathoracic placement of the trocar. It is unnecessary to use trocars with a multifunction valve.
5.10 Inspection of the Thoracic Cavity

A 4-mm HOPKINS® endoscope (thoracoscope) with a 30° viewing angle is introduced into the chest through the flexible trocar. The endoscope should be warmed beforehand to prevent fogging. The examination begins with a systematic survey of the thoracic cavity. Once the survey is completed, a more detailed look is taken at suspicious areas or lesions. It may be necessary to tilt the operating table longitudinally or transversely to aid visualization of the posterior, anterior, apical and basal lung regions. A 30° endoscope allows the operator to inspect all portions of the chest cavity. It is particularly effective for evaluating lesions of the chest wall.

If a pleural effusion is present, it should definitely be aspirated from the pleural space prior to thoracoscopy to ensure good visualization. This can be done with an optical suction tube or a separate suction catheter.

The thoracoscopic images below illustrate a range of anatomic details, normal findings, and pathologic changes.

Intrathoracic Views

Inspection of the Left Hemithorax

19 View into the posterior part of the left hemithorax demonstrates the left upper lobe (1), lower lobe (2), and oblique interlobar fissure (3). The intercostal arteries and veins (4) and the ribs (5) are clearly visualized. The lung shows mild signs of anthracosis. The pleura has a smooth, glistening appearance (normal).

20 View into the left pleural dome. The lung shows mild anthracosis (1). Notable structures in the pleural dome (2) are the left subclavian artery (3) and the internal thoracic artery and accompanying veins on the anterior chest wall (4).

21 Anteriorly directed view displays the lingula (1), pericardial fat (2), the phrenic nerve and accompanying vessels (3), and the lower lobe of the left lung (4). Anterior chest wall (5).

22 View of the bulging left diaphragm (1). The posterolateral chest wall (2) is visible on the left side of the field.

23 View of the posterior chest wall displays the ribs (1), intercostal spaces (2) and vessels (3), and the upper (4) and lower lobe (5).
The Method of Medical Thoracoscopy

24 Close-up view of the left subclavian artery (1) and vein (2) along with the internal thoracic artery and left internal thoracic veins (3). Left upper lobe (4), anterior chest wall (5).

25 View of the anterior chest wall displays the internal thoracic artery and veins (1). The surface of the left upper lobe (2) is visible on the right side of the field. The costal pleura appears smooth and shiny and shows normal vascularity.

26 Close-up view of the costal pleura, which appears normal. The yellowish areas are subpleural fat (1).

27 Close-up view of the left pleural dome displays the aortic arch (1), left subclavian artery (2), and the collapsed upper lobe (3) and lower lobe (4).

28 Pleural carcinomatosis involving the left parietal pleura. The velvety red appearance of the pleura is consistent with chronic pleuritis.

29 Pleural empyema.

Inspection of the Right Hemithorax

30 View into the right hemithorax shows the “border triangle” formed by the junction of the middle lobe (1), lower lobe (2) and upper lobe (3). The visceral and parietal pleura appear thickened and fibrotic due to chronic fibrosing pleuritis.

31 View of the right cardiophrenic angle with the right atrium (1), diaphragm (2) and middle lobe (3).
5.11 Thoracoscopic Biopsy and Lysis of Adhesions

All lesions visible at thoracoscopy should be biopsied. This can be done with an optical biopsy forceps (Fig. 32). With diffuse pleural diseases, multiple pleural biopsies should be taken to obtain ample material from various sites. If the desired biopsy sites are not accessible through the initial portal, a second trocar can be inserted under local anesthesia and thoracoscopic guidance so that the necessary biopsies can be taken from that position. It is rarely necessary to add a second portal, however. Heavy bleeding from biopsy sites can be controlled by electrocautery with an optically guided hook electrode (Figs. 33, 34).

Biopsies can be taken from the parietal and visceral pleura as required. When tissue is sampled from the costal pleura, the area about the caudal rib margins should be avoided to prevent injury to intercostal vessels. If the visceral pleura is biopsied and an air leak occurs, it will generally close spontaneously within 7 days.

When adhesions are present, they can be cleared by side-to-side movements of the thoracoscope itself if they are very soft. Firmer adhesions can be divided with the hook electrode. As a note of caution, dense adhesions may transmit vessels of significant size that can bleed profusely if severed. If this complication arises, it may be necessary to create a second portal for hemostasis with a cautery probe or clip. Complicated parapneumonic effusions and pleural empyema may also require a second portal, through which adhesions can be lysed under vision with a probe. As a general rule, however, it is rarely necessary to create a second portal.
5.12 Talc Pleurodesis

The indications for talc pleurodesis are described in Sect. 2.1. It must be possible for the lung to expand fully and occupy all of the chest cavity. The expansibility of the lung is tested by introducing the thoracoscope and optical suction tube into the chest. The air is then suctioned from the chest while lung expansion is observed with the thoracoscope. Once the lung has expanded completely, it is ready for talc pleurodesis. Talcum powder is blown into the pleural space with an optical powder dispenser (Figs. 35–37). For effective pleurodesis, approximately 4 gr of talc is blown into the pleural cavity under thoracoscopic vision. The operator should make sure that all effusion has been aspirated from the chest prior to talc pleurodesis and that the entire lung and chest wall are coated with a thin film of talcum powder.

The talc should be applied in fractionated doses. Talc insufflation raises the intrathoracic pressure, and a potentially dangerous intrathoracic pressure rise is avoided by intermittently pausing the insufflation and removing the dispenser. Air escaping from the chest cavity makes an audible whistling sound. Talc pleurodesis is a very effective procedure with a reported success rate of 83–93%. Even long-term studies have documented success rates higher than 80%. In recent years there have been efforts to replace talc pleurodesis with other procedures. Studies in relatively small case numbers have shown that the instillation of silver nitrate solution into the pleura can also induce pleurodesis. To date, there are no comprehensive studies showing that this technique is superior to talc pleurodesis.
5.13 Concluding the Procedure

At the end of the procedure, the entire pleural cavity should be carefully reinspected so that any bleeding from a biopsy or adhesiolysis can be detected and controlled.

A 24-Charr. drain is then introduced into the pleura under vision. We recommend the preplacement of vertical mattress sutures after trocar removal. Then a 24-Charr. drain is passed through the trocar port into the chest cavity. During this time the drain should be stabilized with a probe passed into its lumen through a side hole in the drain. The probe is removed, and the 4-mm HOPKINS® endoscope is inserted into the drain lumen through a side hole and advanced until the interior of the chest cavity can be seen. Now the drain can be advanced posteriorly along a paravertebral path under direct visual control (Figs. 38–40). Next the thoracoscope is withdrawn, removing it completely from the drain. At this point the thoracoscope and drainage tube are in the original trocar port, so the thoracoscope can again be used to check the drain position and adjust it as needed. After the thoracoscope is removed, the drain can be secured with the preplaced suture. It is advisable to tie one knot, then wind the suture several times around the drain and tie a final knot. Next the chest wall is cleaned and an adhesive dressing is placed around the drain.

The drain is connected to a suction pump. We prefer an electronic pump that also indicates airflow (Fig. 41).
Management after Thoracoscopy

Patients are monitored in the recovery room for 1–2 hours after thoracoscopy. A chest radiograph is obtained when the patient is returned to the floor. This is necessary to check for lung reexpansion and drain position. Adequate pain management is important after thoracoscopy. For this purpose, 50 mg pethidine may be given subcutaneously or 0.2–0.4 mg buprenorphine sublingually as needed. Following talc pleurodesis, care should be taken that the patient does not receive corticosteroids or NSAIDs as they would suppress the inflammatory response necessary for pleurodesis. Vital signs (pulse and blood pressure) should be taken hourly for the first 6 hours after the procedure. Nursing staff should make sure that the chest tube remains patent. Drain output and fluid appearance should be recorded and documented. When the output falls below 100 mL/24 hours, the drain may be removed. It is important to ambulate the patient immediately after thoracoscopy. Prophylactic antibiotics are unnecessary.

Complications

The complication rate after thoracoscopy is low. Our own studies indicate a rate of 2.34%. A total of 214 cases were reviewed. More recent studies also document the safety of thoracoscopy. Brims et al. (2012) report an infection rate of 10.5% in 57 cases (4 cases of pneumonia, 2 empyemas). This appears relatively high and is not consistent with our experience. The longer the drain remains in place, however, the higher the risk of infection. No thoracoscopy-related deaths have been reported.

Summary

Medical thoracoscopy is an economical, highly effective interventional procedure that can be learned quickly, has few complications, and permits the rapid and safe diagnosis of pleural diseases. This opinion is shared by many other authors. If necessary, thoracoscopy can also be used to investigate lesions in the peripheral lung and mediastinum. ‘Minithoracoscopy,’ which employs thorascopes 2–5 mm in diameter, is also described by other authors as a highly effective, minimally invasive diagnostic procedure.

In recent years medical thoracoscopy has been increasingly applied for therapeutic purposes. It has a major role in the treatment of complicated parapneumonic pleural effusions and pleural empyema. At present, thoracoscopic talc pleurodesis is the most effective and economical method that we have for inducing pleurodesis.
References

Instrument Set for Medical Thoracoscopy

Excerpts from the following catalogs:

THORAX and TELEPRESENCE, IMAGING SYSTEMS, DOCUMENTATION AND ILLUMINATION
Die Methode der internistischen Thorakoskopie

Es wird empfohlen, vor der Verwendung die Eignung der Produkte für den geplanten Eingriff zu überprüfen.

6-mm-Instrumentenset n. HEINE

- **HOPKINS® Großbild-Vorausblick-Optik 30°**, Ø 4 mm, Länge 30 cm, **autoklavierbar**, mit eingebauter Fiberglas-Lichtleitung, Kennfarbe: rot

- **Optische Zange zur Probeexcision**, beide Maulteile beweglich, zur Verwendung mit HOPKINS® Optik 26072 BA

- **Optisches Saugrohr**, zur Verwendung mit HOPKINS® Optik 26072 BA

Es wird empfohlen, vor der Verwendung die Eignung der Produkte für den geplanten Eingriff zu überprüfen.
Die Methode der internistischen Thorakoskopie

Optischer Pulverbläser, mit Zerstäuber und Gummigebläse, zur Verwendung mit HOPKINS® Optik 26072BA

Optische Dissektionselektrode, L-förmig, mit Anschluss für unipolare Koagulation, zur Verwendung mit HOPKINS® Optik 26072BA

Trokar, mit stumpfer Spitze, flexible Hülse, autoklavierbar, Größe 6 mm, Nutzlänge 8,5 cm, Kennfarbe: schwarz, einschließlich:

Trokarhülse
Trokardorn

Kunststoffhülse, autoklavierbar, für flexible Trokare, Größe 6 mm, Packung zu 5 Stück

Pneumoperitoneum-Kanüle n. VERESS, mit gefederter stumpfer Innenkanüle, LUER-Lock, autoklavierbar, Ø 2,1 mm, Länge 10 cm
11-mm-Instrumentenset

HOPKINS® Geradeausblick-Optik 0°, Schrägeinblick, Ø 10 mm, Länge 27 cm, **autoklavierbar**, mit eingebauter Fiberglas-Lichtleitung und 6-mm-Arbeitskanal

Pneumoperitoneum-Kanüle n. VERESS, mit gefederter stumpfer Innenkanüle, LUER-Lock, **autoklavierbar**, Ø 2,1 mm, Länge 10 cm

Trokar, Größe 11 mm, Kennfarbe: grün-weiß, einschließlich:
- **Trokardorn mit stumpfer Spitze**
- **Trokarhülse ohne Ventil**, mit Hahn zur Insufflation, Länge 8,5 cm
- **Multifunktionsventil**, Größe 11 mm

Koagulations- und Dissektionselektrode, mit Saugkanal, Schaft isoliert, mit Anschluss für unipolare Koagulation, Größe 5 mm, Länge 43 cm

Handgriff mit Trompetenventil, für Absaugung oder Spülung, **autoklavierbar**, zur Verwendung mit 5-mm-Koagulationssaugrohren und 5-mm-Saug- und Spülrohren
Die Methode der internistischen Thorakoskopie

- **Clickline Zange zur Probeexzision**, drehbar, zerklebar, isoliert, mit Anschluss für unipolare Koagulation, mit Luer-Lock-Spülanschluss zur Reinigung, ein Maulteil beweglich, Größe 5 mm, Länge 43 cm, einschließlich:
 - Kunststoff-Handgriff, ohne Raste
 - Metall-Außenschaft
 - Zangeneinsatz

- **Koagulations- und Dissektionselektrode**, L-förmig, mit Anschluss für unipolare Koagulation, Größe 5 mm, Länge 43 cm

- **Pulverbläser**, mit Gummigebläse, Schaft gerade, Größe 5 mm, Länge 42 cm, einschließlich:
 - Schaft
 - Gummiball
 - Schlauch
 - Glas
Instrumente für die Technik mit zwei Zugängen

HOPKINS® Großbild-Vorausblick-Optik 30°,
Ø 5 mm, Länge 29 cm, autoklavierbar,
mit eingebauter Fiberglas-Lichtleitung,
Kennfarbe: rot

Trokar, mit stumpfer Spitze, flexible Hülse,
autoklavierbar, Größe 6 mm, Nutzlänge 8,5 cm,
Kennfarbe: schwarz,
einschließlich:
Trokarthülse
Trokardorn

Kunststoffhülse, autoklavierbar, für flexible Trokare,
Größe 6 mm, Packung zu 5 Stück

Koagulationssaugrohr, mit Anschluss für unipolare Koagulation,
Schaft distal abgewinkelt,
Größe 5 mm, Länge 28 cm,
zur Verwendung mit Handgriff 30804

Handgriff mit Trompetenventil, für Absaugung oder Spülung, autoklavierbar,
zur Verwendung mit 5-mm-Koagulationssaugrohren und 5-mm-Saug- und Spülohren
Die Methode der internistischen Thorakoskopie

Dissektionselektrode, L-förmig, isoliert, mit Anschluss für unipolare Koagulation, Schaft distal abgewinkelt, Größe 5 mm, Länge 28 cm

Pulverbläser, mit Gummigebläse, Schaft distal abgewinkelt, Größe 5 mm, Länge 30 cm

ClickLine Biopsiezange, zerlegbar, isoliert, mit Anschluss für unipolare Koagulation, mit Luer-Lock-Spülanschluss zur Reinigung, distal abgewinkelter Außenschacht, ein Maulteil beweglich, Maulteil öffnet vertikal zur Abwinklung, Größe 5 mm, Länge 28 cm, einschließlich:
- **Kunststoff-Handgriff**, axial, ohne Raste, mit 4 Arretierpositionen
- **Außenschacht mit Arbeitseinsatz**
Die Methode der internistischen Thorakoskopie

IMAGE1 S Kamerastystem

Wirtschaftlich und zukunftssicher
- Modulares Konzept für flexible, starre und 3D-Endoskopie sowie neue Technologien
- Vor- und Rückwärtskompatibilität mit Videoendoskopen und FULL-HD-Kameraköpfen

Nachhaltige Investition
- Mit allen Lichtquellen kompatibel

Innovatives Design
- Dashboard: Gesamtübersicht mit intuitiver Menüführung
- Live-Menü: Anwenderfreundlich und individuell anpassbar
- Intelligente Symbole: Die grafische Darstellung wechselt, wenn Einstellungen an den angeschlossenen Geräten oder am Gesamtsystem vorgenommen werden

Automatische Lichtquellensteuerung
- Side-by-Side View: Parallele Darstellung von Standardbild und Visualisierungsmodus möglich
- Multiple Quellensteuerung: IMAGE1 S erlaubt es, die Bildinformationen zweier angeschlossener Bildquellen gleichzeitig darzustellen, zu verarbeiten und zu dokumentieren, beispielsweise für Hybridoperationen
IMAGE1 S Kamerystem

Videoendoskopische Bildgebung
- Sehr gute Bildqualität in FULL HD
- Natürliche Farbwiedergabe

- Verschiedene IMAGE1 S Technologien für homogene Ausleuchtung, Kontrastanhebung und Farbtonverschiebungen

FULL HD-Bild

CLARA

FULL HD-Bild

CHROMA

FULL HD-Bild

SPECTRA A*

FULL HD-Bild

SPECTRA B**

* SPECTRA A: Nicht für Verkauf in den Vereinigten Staaten
** SPECTRA B: Nicht für Verkauf in den Vereinigten Staaten
Die Methode der internistischen Thorakoskopie

IMAGE1 S Kamerasystem

\[\text{TC200DE}\]

TC200DE
IMAGE1 S CONNECT, Connect-Modul, zum Betrieb von bis zu 3 Link-Modulen, Auflösung 1920 x 1080 Pixel, mit integriertem KARL STORZ-SCB und digitalem Bildprozessormodul, Betriebsspannung 100–120 VAC/200–240 VAC, 50/60 Hz einschließlich:
Netzkabel, Länge 300 cm
DVI-D-Verbindungskabel, Länge 300 cm
SCB-Verbindungskabel, Länge 100 cm
USB-Stick, 32 GB, USB-Silikontastatur, mit Touchpad, DE
*Erhältlich auch in folgenden Sprachen: EN, ES, FR, IT, PT, RU

Technische Angaben:

| HD-Video-Ausgänge | - 2x DVI-D
| Format Signalausgänge | - 1x 3G-SDI
| LINK-Videoeingänge | 1920 x 1080p, 50/60 Hz
| USB-Schnittstelle | 4x USB, (2x vorne, 2x hinten)
| SCB-Schnittstelle | 2x 6 pin Mini-DIN
| Netzspannung | 100–120 VAC/200–240 VAC
| Netzfrequenz | 50/60 Hz
| Schutzklasse | I, CF-Defib
| Abmessungen B x H x T | 305 x 54 x 320 mm
| Gewicht | 2.1 kg

Zur Verwendung mit IMAGE1 S

IMAGE1 S CONNECT Modul TC200DE

\[\text{TC300}\]

TC300
IMAGE1 S H3-LINK, Link-Modul, zum Betrieb von IMAGE1 FULL HD-Drei-Chip-Kameraköpfen, Betriebsspannung 100–120 VAC/200–240 VAC, 50/60 Hz
zur Verwendung mit IMAGE1 S CONNECT TC 200DE einschließlich:
Netzkabel, Länge 300 cm
Link-Kabel, Länge 20 cm

Technische Angaben:

| Kamerasystem | TC300 (H3-Link)
| Unterstützte Kameraköpfe/Videoendoskope | TH100, TH101, TH102, TH103, TH104, TH106
| (kompatibel mit IMAGE1 S)
| | 22220055-3, 22220056-3, 22220053-3, 22220060-3, 22220061-3, 22220054-3, 22220085-3
| (kompatibel ohne IMAGE1 S-Technologien CLARA, CHROMA, SPECTRA*)
| LINK-Videoausgänge | 1x
| Netzspannung | 100–120 VAC/200–240 VAC
| Netzfrequenz | 50/60 Hz
| Schutzklasse | I, CF-Defib
| Abmessungen B x H x T | 305 x 54 x 320 mm
| Gewicht | 1.86 kg

* SPECTRA A: Nicht für Verkauf in den Vereinigten Staaten
** SPECTRA B: Nicht für Verkauf in den Vereinigten Staaten
IMAGE1 S Kameraköpfe

Zur Verwendung mit IMAGE1 S Kamerasystem

IMAGE1 S CONNECT Modul TC200DE, IMAGE1 S H3-LINK Modul TC300

und mit allen IMAGE1 HUB™ HD Kamera-Kontrolleinheiten

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Kameraköpfe</th>
<th>IMAGE1 S H3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art.-Nr.</td>
<td>TH100</td>
</tr>
<tr>
<td>Bildsensor</td>
<td>3x 1/3" CCD-Chip</td>
</tr>
<tr>
<td>Abmessung (B x H x L)</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>270 g</td>
</tr>
<tr>
<td>Optische Schnittstelle</td>
<td>Integriertes Parfocal Zoom-Objektiv, f = 15 – 31 mm (2x)</td>
</tr>
<tr>
<td>Min. Lichtempfindlichkeit</td>
<td>F 1,4/1,17 Lux</td>
</tr>
<tr>
<td>Fassmechanismus</td>
<td>Standardokularaufnahme</td>
</tr>
<tr>
<td>Kabel</td>
<td>fest verbunden</td>
</tr>
<tr>
<td>Kabellänge</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

IMAGE1 S H3-Z Drei-Chip-FULL-HD-Kamerakopf,

50/60 Hz, IMAGE1 S kompatibel, Progressive Scan, einlegbar, gassterilisierbar, plasmasterilisierbar, mit integriertem Parfocal Zoom-Objektiv, Brennweite f = 15 – 31 mm (2x), 2 frei programmierbare Kamerakopftasten, zur Verwendung mit IMAGE1 S und IMAGE1 HUB™ HD/HD

Technische Angaben:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Kameraköpfe</th>
<th>IMAGE1 S H3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art.-Nr.</td>
<td>TH100</td>
</tr>
<tr>
<td>Bildsensor</td>
<td>3x 1/3" CCD-Chip</td>
</tr>
<tr>
<td>Abmessung (B x H x L)</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>299 g</td>
</tr>
<tr>
<td>Optische Schnittstelle</td>
<td>Integriertes Parfocal Zoom-Objektiv, f = 15 – 31 mm</td>
</tr>
<tr>
<td>Min. Lichtempfindlichkeit</td>
<td>F 1,4/1,17 Lux</td>
</tr>
<tr>
<td>Fassmechanismus</td>
<td>Standardokularaufnahme</td>
</tr>
<tr>
<td>Kabel</td>
<td>fest verbunden</td>
</tr>
<tr>
<td>Kabellänge</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

IMAGE1 S H3-ZA Drei-Chip-FULL-HD-Kamerakopf,

50/60 Hz, IMAGE1 S kompatibel, [autoklavierbar](#), Progressive Scan, einlegbar, gassterilisierbar, plasmasterilisierbar, mit integriertem Parfocal Zoom-Objektiv, Brennweite f = 15 – 31 mm (2x), 2 frei programmierbare Kamerakopftasten, zur Verwendung mit IMAGE1 S und IMAGE1 HUB™ HD/HD

Technische Angaben:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Kameraköpfe</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art.-Nr.</td>
<td>TH104</td>
</tr>
<tr>
<td>Bildsensor</td>
<td>3x 1/3" CCD-Chip</td>
</tr>
<tr>
<td>Abmessung (B x H x L)</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Gewicht</td>
<td>299 g</td>
</tr>
<tr>
<td>Optische Schnittstelle</td>
<td>Integriertes Parfocal Zoom-Objektiv, f = 15 – 31 mm</td>
</tr>
<tr>
<td>Min. Lichtempfindlichkeit</td>
<td>F 1,4/1,17 Lux</td>
</tr>
<tr>
<td>Fassmechanismus</td>
<td>Standardokularaufnahme</td>
</tr>
<tr>
<td>Kabel</td>
<td>fest verbunden</td>
</tr>
<tr>
<td>Kabellänge</td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Monitore

9619NB 19" HD Monitor,
Farbsysteme PAL/NTSC,
max. Bildschirmauflösung 1280 x 1024,
Bildformat 4:3,
Betriebsspannung 100–240 VAC, 50/60 Hz,
Wandmontage mit VESA 100-Adaption
einschließlich:
Externes 24 VDC-Netzteil
Netzkabel

9826NB 26" FULL HD-Monitor,
Wandmontage mit VESA 100-Adaption,
Farbsysteme PAL/NTSC,
max. Bildschirmauflösung 1920 x 1080,
Bildformat 16:9,
Betriebsspannung 100–240 VAC, 50/60 Hz
einschließlich:
Externes 24 VDC-Netzteil
Netzkabel
Monitore

<table>
<thead>
<tr>
<th>KARL STORZ HD und FULL-HD-Monitore</th>
<th>19"</th>
<th>20"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandmontage mit VESA 100-Adaption</td>
<td>9619NB</td>
<td>9826NB</td>
</tr>
</tbody>
</table>

Eingänge:

- DVI-D
- Fibre Optic
- 3G-SDI
- RGBS (VGA)
- S-Video
- Composite/FBAS

Ausgänge:

- DVI-D
- S-Video
- Composite/FBAS
- RGBS (VGA)
- 3G-SDI

Darstellbare Signalformate:

- 4:3
- 5:4
- 16:9
- Bild in Bild
- PAL/NTSC kompatibel

Optionales Zubehör:

- 9826SF **Standfuß**, für Monitor 9826NB
- 9626SF **Standfuß**, für Monitor 9619NB

Technische Angaben:

<table>
<thead>
<tr>
<th>KARL STORZ HD und FULL-HD-Monitore</th>
<th>19"</th>
<th>20"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop mit Standfuß</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Art.-Nr.</td>
<td>9619NB</td>
<td>9826NB</td>
</tr>
<tr>
<td>Helligkeit</td>
<td>200 cd/m² (Typ)</td>
<td>500 cd/m² (Typ)</td>
</tr>
<tr>
<td>Max. Beobachtungswinkel</td>
<td>178° vertikal</td>
<td>178° vertikal</td>
</tr>
<tr>
<td>Pixelabstand</td>
<td>0,29 mm</td>
<td>0,3 mm</td>
</tr>
<tr>
<td>Reaktionszeit</td>
<td>5 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>Kontrastverhältnis</td>
<td>700:1</td>
<td>1400:1</td>
</tr>
<tr>
<td>Befestigung</td>
<td>100 mm VESA</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Gewicht</td>
<td>7,6 kg</td>
<td>7,7 kg</td>
</tr>
<tr>
<td>Leistungsaufnahme</td>
<td>28 W</td>
<td>72 W</td>
</tr>
<tr>
<td>Umgebungsbedingungen Betrieb</td>
<td>0–40°C</td>
<td>5–35°C</td>
</tr>
<tr>
<td>Lagerung</td>
<td>-20–60°C</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Relative Luftfeuchte</td>
<td>max. 85%</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Abmessungen B x H x T</td>
<td>469,5 x 416 x 75,5 mm</td>
<td>643 x 396 x 87 mm</td>
</tr>
<tr>
<td>Betriebsspannung</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Bauart</td>
<td>entspricht EN 60601-1, Schutz-klasse IPX0</td>
<td>entspricht EN 60601-1, UL 60601-1, MDD93/42/EEC, Schutzklasse IPX2</td>
</tr>
</tbody>
</table>
Kaltlicht-Fontäne Power LED 175 SCB

Kaltlicht-Fontäne Power LED 175 SCB, mit integriertem SCB, High-Performance LED und einem KARL STORZ Lichtkabelanschluss, Betriebsspannung 110–240 VAC, 50/60 Hz einschließlich:
Netzkabel

ENDOFLATOR® 40 mit KARL STORZ SCB
mit Speed-Flow-Insufflation (40 l/min)

ENDOFLATOR® 40 SCB, Set, mit integriertem SCB-Modul, Betriebsspannung 100–240 VAC, 50/60 Hz einschließlich:
ENDOFLATOR® 40
Netzkabel, Länge 300 cm
SCB-Verbindungskabel, Länge 100 cm
Universalschlüssel
Insufflationsschlauchset, mit Gasfilter, steril, zum Einmalgebrauch, Packung zu 5 Stück*

Entsprechend den individuellen Anforderungen des Kunden kann weiteres Zubehör angeboten werden.

DUOMAT®
Saug- und Spülpumpe

DUOMAT® Saug- und Spülpumpe, einschließlich:
DUOMAT®, Betriebsspannung 100–120, 230–240 VAC, 50/60 Hz
Netzkabel
VACUsafe Promotion
Pack Absaugung, 2 l*
(nicht abgebildet)

Entsprechend den individuellen Anforderungen des Kunden kann weiteres Zubehör angeboten werden.
Gerätewagen

Gerätewagen, breit, hoch, auf 4 antistatischen und feststellbaren Doppellrollen, Netzhauptschalter an der Abdeckung, Zentralholm mit integrierten elektrischen Unterverteilern mit 12 Steckplätzen, Potentialausgleichsanschlüssen,

Abmessungen in mm (B x H x T):
Gerätewagen: 830 x 1474 x 730,
Konsole: 630 x 25 x 510,
Rollendurchmesser: 150 mm

einschließlich:

Bodenmodul Gerätewagen, breit
Abdeckung Gerätewagen, breit
Holmpaket Gerätewagen, hoch
3x **Konsole**, breit
Schubladenblock mit Schloss, breit
2x **Geräteschiene**, lang
Kamerahalter

Monitorschwenkarm, höhen- und seitverstellbar, links und rechts positionierbar, Schwenkbereich 180°, Ausladung 780 mm, ab Mitte 1170 mm, Tragkraft max. 15 kg, mit Monitorbefestigung VESA 75/100 zur Verwendung mit Gerätewagen UGxxx
Empfohlenes Zubehör für Gerätewagen

Trenntransformator,
200–240 V, 2000 VA,
mit 3-fach Spezialsteckdosenleiste,
Sicherungsautomat,
3 Potentialausgleichsanschlüssen,
Abmessungen in mm (B x H x T): 330 x 90 x 495 mm,
zur Verwendung mit Gerätewagen UGxxx

Isolationswächter,
200–240 V, zur Montage an Gerätewagen,
Abmessungen Bedienteil in mm (B x H x T): 44 x 80 x 29
zur Verwendung mit Trenntransformator UG310

Monitorhaltearm,
höhen- und seitenverstellbar, neigbar,
seitlich montierbar links oder rechts,
Schwenkbereich bis ca. 320°,
Ausladung 530 mm, Tragkraft max. 15 kg,
mit Monitorhalterung VESA 75/100,
zur Verwendung mit Gerätewagen UGxxx
with the compliments of
KARL STORZ — ENDOSKOPE