MINIMALLY INVASIVE RECONSTRUCTION OF THE MEDIAL PATELLOFEMORAL LIGAMENT (MPFL) USING A QUADRICEPS TENDON GRAFT

Christian FINK
Christian HOSER
MINIMALLY INVASIVE RECONSTRUCTION OF THE MEDIAL PATELLOFEMORAL LIGAMENT (MPFL) USING A QUADRICEPS TENDON GRAFT

Christian FINK
Christian HOSER

Innsbruck, Austria
Minimally Invasive Reconstruction of the Medial Patellofemoral Ligament (MPFL) Using a Quadriceps Tendon Graft

Christian Fink
Christian Hoser
Innsbruck, Austria

Correspondence address of the author:
Ao. Univ. Prof. Dr. Christian Fink
Gelenkpunkt - Center for Sports and Joint Surgery
Olympiastr. 39
6020 Innsbruck, Austria
E-mail: c.fink@gelenkpunkt.com

All rights reserved. 1st edition 2013
© 2016 Endo® GmbH
P.O. Box, 78503 Tuttlingen, Germany
Phone: +49 (0) 74 61/1 45 90
Fax: +49 (0) 74 61/708-529
E-mail: endopress@t-online.de

No part of this publication may be translated, reprinted or reproduced, transmitted in any form or by any means, electronic or mechanical, now known or hereafter invented, including photocopying and recording, or utilized in any information storage or retrieval system without the prior written permission of the copyright holder.

Editions in languages other than English and German are in preparation. For up-to-date information, please contact Endo® GmbH at the address shown above.

Important notes:
Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any third party publication(s) or links to any third party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the third party publication(s) or third party websites and no guarantee is given for any other work or any other websites at all.

ISBN 978-3-89756-738-2
Table of Contents

1.0 Introduction ......................................................... 6
2.0 Surgical Technique .................................................. 7
  2.1 Patient Positioning ............................................... 7
  2.2 Graft Harvesting .................................................. 7
  2.3 Graft Preparation ................................................ 9
  2.4 Femoral Anchoring ............................................... 10
  2.5 Follow-up Care ................................................... 10
3.0 Summary ............................................................ 11
4.0 Bibliography ........................................................ 11

Instruments for Quadriceps Tendon Graft Harvesting and
MPFL Reconstruction .................................................... 12

Instruments and Implants for Reconstruction of the Medial
Patellofemoral Ligament (MPFL) ........................................ 13
1.0 Introduction

In recent years, medial patellofemoral ligament (MPFL) reconstruction has gained in popularity for the treatment of patellofemoral instability. Numerous surgical techniques have been published, most of them using semitendinosus or gracilis tendon grafts.\textsuperscript{2, 5, 8, 9, 12, 13} The majority of these techniques, tunnels and/or anchor systems are used for graft fixation in the patella. While these surgical techniques are largely associated with very good clinical results,\textsuperscript{3} several problems have arisen.\textsuperscript{1, 9} In a meta-analysis of MPFL reconstruction, Shah \textit{et al.}\textsuperscript{14} described a complication rate of 26.1\%. The most common problems were reduced knee flexion and patellar fractures (through already existing bone tunnels).

As an alternative to hamstring tendon grafts for MPFL reconstruction, surgical techniques using quadriceps tendon have been described; these techniques do not require tunnels or anchor systems in the patella.\textsuperscript{7, 11, 15} Morphologically, quadriceps tendon is more similar to the native MPFL (Figs. 1a, b).

Macroscopic anatomy of the native MPFL, demonstrated on a dissected human specimen (a, b).

Its biomechanical properties (maximum pullout force, stiffness) also match the native MPFL.\textsuperscript{4} In contrast, hamstring tendon grafts have an approximately threefold higher stiffness than native MPFL.\textsuperscript{4} However, the cosmetic drawbacks of a longitudinal skin incision at the thigh (Fig. 2) and the technically challenging harvest of constant-thickness quadriceps tendon grafts may have limited the popularity of these techniques in the past.

The following describes a modification of the existing techniques. For this minimally invasive surgical technique specific instruments are used to ensure a safe and reliable harvesting of the quadriceps tendon graft.

Top view of the scar of a longitudinal skin incision following conventional tendon graft harvesting.
2.0 Surgical Technique

2.1 Patient Positioning

For MPFL reconstruction, the patient is placed in supine position. Ideally, the knee should be freely movable in the range of 0° to 120°. This can be achieved on a normal operating table or using stirrups. Prior to surgery, it is important to make sure that an accurate lateral radiograph can be taken using intraoperative fluoroscopy. We prefer positioning the healthy leg in lithotomy position and the other in a motor-driven stirrup to provide good surgical access and permit flexible intraoperative use of the fluoroscope (Fig. 3).

2.2 Graft Harvesting

For harvesting a strip of quadriceps tendon, the knee is held in 90° of flexion, and a transverse skin incision of about 3 cm in length is made over the superomedial patellar pole (Figs. 4a, b). This is followed by subcutaneous dissection and exposure of the quadriceps tendon; the superficial bursa layer must be carefully removed to allow reliable identification of the tendon surface. Now, a Langenbeck retractor can be placed proximally in order to provide good visualization of the surface of the quadriceps tendon. Next, a tendon knife of 10 mm or 12 mm in width (depending on patient size) is placed over the medial third of the upper patellar edge and is proximally advanced subcutaneously by 8–10 cm (depending on patient size). Length is measured using the graduation at the handle of the knife (Figs. 5a–c).
Subcutaneous horizontal cutting of the tendon is performed to define the thickness with a tendon separator. For this purpose, two tendon separators, sized 2 mm or 3 mm, are available (depending on patient size).

The tendon separator is laterally inserted into the vertical incision (Fig. 6a). The horizontal cutting edge should emerge at the medial cutting edge. The tendon separator is advanced subcutaneously in a proximal direction by 8–10 cm (Figs. 6b, c).

Next, the tendon cutter is laterally inserted for subcutaneous transection of the tendon at its proximal end (Fig. 7a). The knee is slightly extended (at approx. 50° of flexion) for threading the quadriceps tendon strip into the quadriceps tendon cutter. Now, the cutter is advanced to the desired graft length (8–10 cm) (Fig. 7b). Once transection of the tendon is complete, it is distally everted (Fig. 8).

This technique allows pedicled quadriceps tendon grafts to be harvested atraumatically and partially, with 10/12 mm in width and 2/3 mm in thickness.
2.3 Graft Preparation

For MPFL reconstruction, the harvested graft remains distally pedicled. At its proximal end, an absorbable 2-0 suture is attached using a whip stitch technique. The skin incisions are extended distally over the patella by 1.5–2 cm according to the width of the graft, and the tendon strip is then cautiously elevated in the subperiostal plane from the anterior patellar surface (medially 0.5–1 cm, laterally 1.5–2 cm) (Figs. 9a, b).

In the next step, the medial patellar margin is exposed. The bony patellar margin should be debrided with a Luer rongeur to enhance a rapid onset of healing (Fig. 10). Now, the prepatellar tissue is laterally mobilized as far as the medial margin of the quadriceps tendon graft. This is best accomplished using a raspatory (Fig. 11).

A forceps is medially inserted underneath the mobilized tissue to grasp the ends of the sutures that have been attached to the proximal end of the quadriceps tendon graft (Fig. 12). The sutures are passed medially and threaded out, then the graft is everted by 90° and pulled through.

At the medial patellar margin, the graft is now fixed in place proximally and distally using two fixation sutures (2.0 sutures, absorbable) (Figs. 13a, b).
2.4 Femoral Anchoring

The adductor tubercle is palpated and a 1.5-cm long skin incision is made at this site. Using a curved forceps, a soft tissue tunnel is created from the medial patellar margin to this incision. It should be placed underneath the insertion of the vastus medialis muscle making sure that an extracapsular layer is maintained. A suture loop is inserted in the tunnel and used to pull through the graft.

Under fluoroscopic guidance, a 2.4-mm guide wire is inserted at the site of MPFL insertion (Fig. 14). The sutures of the graft can be wrapped around the guide wire, and the knee is ranged through from full extension to flexion (isometric assessment). Flexing the knee should not increase tension on the graft.

Provided appropriate positioning is confirmed, a cannulated bone drill (6–8 mm, depending on graft size, determined in advance using a conventional gauge) is used to drill over the guide wire to a depth of about 30 mm.

Now, the sutures of the graft are inserted into the guide wire eyelet, and the graft is pulled into the drilled tunnel. The knee is ranged through from full extension to flexion again and then placed in 20° flexion to fix the graft in place using a MEGAFIX® interference screw matching the diameter of the tunnel (Fig. 15). The lateral margin of the patella should be flush with the lateral trochlear margin.

**Note:** In case of open epiphyseal plates, the graft is secured at the femur using a bone anchor. It should be placed distally to the epiphyseal plate at the medial femoral condyle. It is important to confirm appropriate positioning in two planes using fluoroscopy (Figs. 16a, b).

2.5 Follow-up Care

Postoperatively, patients are maintained in an adjustable hinged knee brace with a motion range of 0°–90°. For the first 3 weeks after surgery, partial weightbearing to about 20 kg of body weight, which is then gradually increased to full weightbearing.

Passive and active-assisted exercises in the range of 0°–90° can be started on the first postoperative day. Exercises on a stationary bike may typically be initiated following the 6th postoperative week. Most patients can resume their full sports activities after 4–5 months.
3.0 Summary

MPFL reconstruction with a pedicled quadriceps tendon graft is a valid alternative option to the commonly used MPFL reconstruction techniques with hamstring tendon grafts. Unlike the latter techniques, use of a pedicled quadriceps tendon graft obviates the need for implants or bone tunnels usually required for patellar anchoring. Therefore, this surgical technique is also applicable as revision procedure in case of failed MPFL reconstruction, particularly in patients with a history of previous tunnels or implants in the patella.

Since a bone anchor can be used for fixation to the femur, this technique may also be used effectively in patients with open epiphyseal plate. Furthermore, minimally invasive harvesting of the quadriceps tendon graft is usually feasible with an excellent cosmetic outcome (Fig. 17).

4.0 Bibliography


Instruments for Quadriceps Tendon Graft Harvesting and MPFL Reconstruction

28185 QS  **Quadriceps Tendon Cutter**, for subcutaneous terminal cutting of quadriceps tendon

28185 MH  **Handle**, for use with Quadriceps Tendon Separators 28185 EA-EC and Quadriceps Tendon Knives 28185 FA-FF

28185 FA  **Tendon Knife**, for removal of the quadriceps tendon for MPFL reconstruction, vertical parallel cutting, width 10 mm, height 4 mm, sterile, for use with Handle 28185 MH

28185 FB  Same, width 12 mm

28185 EA  **Tendon Separator**, for removal of the quadriceps tendon for MPFL reconstruction, horizontal parallel cutting, height 2 mm, sterile, for use with Handle 28185 MH

28185 EB  Same, height 3 mm

It is recommended to check the suitability of the product for the intended procedure prior to use.
Instruments for Reconstruction of the Medial Patellofemoral Ligament (MPFL)

200400
BAYER Rongeur, slender, curved, length 17 cm

28729 D
Drilling Wire spiral shape, with eyelet, diameter 2.4 mm, length 38 cm

28179 HD
Threading Device, for use with Suture Hooks 28179 HA-HC
Instruments for Reconstruction of the Medial Patellofemoral Ligament (MPFL)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28729 BA</td>
<td><strong>Bone Drill</strong>, cannulated, diameter 4.5 mm, for use with Drilling Wire 28729 D and Larding Wire 28729 E</td>
</tr>
<tr>
<td>28729 BB</td>
<td>Same, diameter 5 mm</td>
</tr>
<tr>
<td>28729 BI</td>
<td>Same, diameter 5.5 mm</td>
</tr>
<tr>
<td>28729 BC</td>
<td>Same, diameter 6 mm</td>
</tr>
<tr>
<td>28729 BK</td>
<td>Same, diameter 6.5 mm</td>
</tr>
<tr>
<td>28729 BD</td>
<td>Same, diameter 7 mm</td>
</tr>
<tr>
<td>28729 BL</td>
<td>Same, diameter 7.5 mm</td>
</tr>
<tr>
<td>28729 BE</td>
<td>Same, diameter 8 mm</td>
</tr>
<tr>
<td>28729 BM</td>
<td>Same, diameter 8.5 mm</td>
</tr>
<tr>
<td>28729 BF</td>
<td>Same, diameter 9 mm</td>
</tr>
<tr>
<td>28729 BN</td>
<td>Same, diameter 9.5 mm</td>
</tr>
<tr>
<td>28729 BG</td>
<td>Same, diameter 10 mm</td>
</tr>
<tr>
<td>28729 BO</td>
<td>Same, diameter 10.5 mm</td>
</tr>
<tr>
<td>28729 BH</td>
<td>Same, diameter 11 mm</td>
</tr>
</tbody>
</table>

**CrossDrive®**

- Special cross drive
- Optimum torsion stability due to fine-tuned transmission of force between screwdriver and interference screw

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>28789 SK</td>
<td><strong>CrossDrive® Screwdriver</strong>, cannulated, size 8 – 11, for use with bioresorbable Mega Fix® screws diameter 8 – 11 mm</td>
</tr>
<tr>
<td>28770 SK</td>
<td><strong>CrossDrive® Screwdriver</strong>, cannulated, size 7, for use with bioresorbable Mega Fix® screws diameter 7 mm</td>
</tr>
<tr>
<td>28760 SK</td>
<td><strong>CrossDrive® Screwdriver</strong>, cannulated, size 6, for use with bioresorbable Mega Fix® screws diameter 6 mm</td>
</tr>
<tr>
<td>28789 GW</td>
<td><strong>Nitinol Guide Wire</strong>, diameter 1.1 mm, length 38.5 cm</td>
</tr>
<tr>
<td>28789 KW</td>
<td><strong>Nitinol Guide Wire</strong>, short, diameter 1.1 mm, length 25.5 cm</td>
</tr>
</tbody>
</table>
Implants for Medial Patellofemoral Ligament Reconstruction

**Mega Fix® B**

2870619 B  Mega Fix® B, bioresorbable interference screw, diameter 6 mm, length 19 mm, sterile  
2870623 B  Same, length 23 mm  

2870719 B  Mega Fix® B, bioresorbable interference screw, diameter 7 mm, length 19 mm, sterile  
2870723 B  Same, length 23 mm  
2870728 B  Same, length 28 mm  

2870819 B  Mega Fix® B, bioresorbable interference screw, diameter 8 mm, length 19 mm, sterile  
2870823 B  Same, length 23 mm  
2870828 B  Same, length 28 mm  

2870923 B  Mega Fix® B, bioresorbable interference screw, diameter 9 mm, length 23 mm, sterile  
2870928 B  Same, length 28 mm  

**Mega Fix® P**

2870823 P  Mega Fix® P, bioresorbable interference screw, perforated, diameter 8 mm, length 23 mm, sterile  
2870828 P  Same, length 28 mm  

2870923 P  Mega Fix® P, bioresorbable interference screw, perforated, diameter 9 mm, length 23 mm, sterile  
2870928 P  Same, length 28 mm  
2870935 P  Same, length 35 mm  

2871028 P  Mega Fix® P, bioresorbable interference screw, perforated, diameter 10 mm, length 28 mm, sterile  
2871035 P  Same, length 35 mm  

2871135 P  Mega Fix® P, bioresorbable interference screw, perforated, diameter 11 mm, length 35 mm, sterile

Minimally Invasive Reconstruction of the Medial Patellofemoral Ligament (MPFL) Using a Quadriceps Tendon Graft
Implants for Medial Patellofemoral Ligament Reconstruction

**Mega Fix® C**

2870619 C Mega Fix® C, bioresorbable composite interference screw, diameter 6 mm, length 19 mm, sterile
2870623 C Same, length 23 mm

2870719 C Mega Fix® C, bioresorbable composite interference screw, diameter 7 mm, length 19 mm, sterile
2870723 C Same, length 23 mm
2870728 C Same, length 28 mm

2870819 C Mega Fix® C, bioresorbable composite interference screw, diameter 8 mm, length 19 mm, sterile
2870823 C Same, length 23 mm
2870828 C Same, length 28 mm

2870923 C Mega Fix® C, bioresorbable composite interference screw, diameter 9 mm, length 23 mm, sterile
2870928 C Same, length 28 mm

**Mega Fix® CP**

2870823 CP Mega Fix® CP, bioresorbable composite interference screw, perforated, diameter 8 mm, length 23 mm, sterile
2870828 CP Same, length 28 mm

2870923 CP Mega Fix® CP, bioresorbable composite interference screw, perforated, diameter 9 mm, length 23 mm, sterile
2870928 CP Same, length 28 mm
2870935 CP Same, length 35 mm

2871028 CP Mega Fix® CP, bioresorbable composite interference screw, perforated, diameter 10 mm, length 28 mm, sterile
2871035 CP Same, length 35 mm

2871135 CP Mega Fix® CP, bioresorbable composite interference screw, perforated, diameter 11 mm, length 35 mm, sterile
Overview of KARL STORZ Arthroscopy and Sports Medicine

- HOPKINS® Telescopes and Sheaths
- SILCUT® Punches
- SILCUT® Punches, Forceps and Scissors
- Joint and Bone Reconstruction
- Instruments for Meniscus and Patella Surgery
- Instruments for Cruciate Ligament Reconstruction
- Instruments for Hip Arthroscopy
- Instruments for Wrist Arthroscopy and for Treatment of the Carpal Tunnel Syndrome
- Instruments for Rheumatology
- Spine Surgery
- HD Imaging with Operating Microscopes
- VITOM® System – Visualization System for Open Surgery with Minimal Access
- Holding Systems
- Extracorporeal Shock Wave Therapy ESWT
- KARL STORZ OR1 NEO™, Telepresence, Hygiene, Endoprotect
Notes: