LAPAROSCOPIC ROUX-EN-Y GASTRIC BYPASS FOR MORBID OBESITY

2nd Edition

Rudolf A. WEINER

Center for Minimally Invasive Surgery
Sachsenhausen Hospital, Frankfurt am Main, Germany
The anatomical and surgical illustrations were made by: Mr. Harald Konopatzki, Grünewaldrasse 3a, D-69126 Heidelberg, Germany E-mail: konillu@t-online.de

Important notes:
Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any 3rd party publication(s) or links to any 3rd party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to and linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the 3rd party publication(s) or 3rd party websites and no guarantee is given for any other work or any other websites at all.
Table of Contents

1.0 Introduction .. 6
 What is the annual cost of obesity in the US? 7
 Comorbidities? .. 8
1.1 Operative Procedures in Bariatric Surgery 8
1.2 Indications for Surgery
 Body Mass Index .. 9
2.0 Historical Background of the Roux-en-Y Gastric Bypass 10
3.0 Laparoscopic Roux-en-Y Gastric Bypass 10
4.0 Technique .. 11
 4.1 Gastrojejunostomy .. 15
 4.1.1 Circular Stapler Anastomosis 16
 4.1.2 Linear Stapler Anastomosis 19
 4.1.3 "Hand-Sewn" Anastomosis 19
 4.2 Jejuno-Jejunal Anastomosis 20
 4.3 Postoperative Phase ... 22
5.0 Results ... 22
 5.1 Mortality .. 23
 5.2 Morbidity .. 24
 5.3 Conversion Rate .. 24
 5.4 Reasons for Conversion 24
 Gastric bypass studies concerning operating times and
 duration of stay at clinic ... 25
 5.5 Excess Weight Loss .. 27
 5.6 Improvement of Comorbidities 27
 5.7 Quality of Life (QoL) .. 28
 5.8 Simultaneous Cholecystectomy? 29
6.0 Complications .. 29
 6.1 Hemorrhage .. 29
 6.2 Anastomotic Insufficiency 30
 6.3 Wound Infection ... 30
 6.4 Postoperative Hemorrhage 30
 6.5 Anastomotic Stenosis (Gastrojejunostomy) 31
 6.6 Anastomotic Stenosis (Entero-Enteric Anastomosis) 31
 6.7 Deep Vein Thrombosis .. 31
 6.8 Anastomotic Ulcer .. 32
 6.9 Internal Hernias and Small Intestine Environment 32
 6.10 Fistulas and Abscesses .. 33
 6.11 Postoperative Incisional Hernia 33
 6.12 Wernicke’s Syndrome .. 34
 6.13 Iron Deficiency ... 34
 6.14 Hyperparathyroidism ... 34
References ... 35
1.0 Introduction

Overweight is spreading throughout all countries so obesity is a worldwide problem: It is the heavy burden of affluent society. For the first time there are just as many fat people on earth as slim people: 1.1 billion people are starving every day – compared with 1.1 billion overweight individuals, and the trend is on the increase. The World Health Organization, WHO, describes obesity as the most serious chronic health problem at present. In some western industrial countries over 50% of the population is overweight. In Germany the figure has now reached 52.4%. 9 million Germans are suffering from obesity requiring treatment. Depending on the particular country, obesity and its sequelae account for 5%-10% of the total cost of the healthcare system. For women the mortality risk is doubled by morbid obesity with a BMI of > 40 kg/m² and for men it is tripled. The earlier obesity occurs, the sharper the rise in mortality risk.

Obesity and its sequelae account for approximately 280,000 deaths a year in the US. As a result, overweight is the second most common cause of death, after smoking. Historically, all attempts at treating morbid obesity (defined as a BMI of > 40 kg/m²) by administration of medication and other conservative methods have produced only minor or transient effects. As a result, surgical treatment has gained widespread acceptance in recent decades due to its superior outcomes. About 2% of the German population is affected. With morbid obesity the interventions can be divided into two categories. A basic distinction is made between methods that cause food malabsorption or ones that cause food restriction. Recent gastric stimulation techniques are still undergoing trials. With regard to life expectancy long-term studies have now also produced evidence that has already been documented sufficiently for quality of life and co-morbidities: the positive impact of surgical weight reduction. When laparoscopic surgical techniques were introduced, bariatric surgery was given particular impetus because it is especially high-risk patients who profit from a minimally invasive approach. Nowadays all surgical procedures are performed using video endoscopy. However, bariatric surgery is high-risk surgery, and it will remain so because patients often suffer from sequelae. In the experienced hands of so-called “high-volume centers” perioperative mortality rates (depending on the type of intervention and the BMI) are achieved which are much higher than in other disciplines of visceral surgery. In the case of the gastric bypass the mean value is 0.5% and in the case of BPD (Biliopancreatic Diversion) and Duodenal Switch the figure rises to over 1%. Therefore, this type of intervention should not be performed at any hospital but only at centers by experienced bariatric surgeons. Surgery is not causal treatment of obesity and one day it will hopefully be superseded due to scientific advancement. For patients there is no other effective solution to their health problems at present. Since young obese patients benefit most from a weight reduction, surgical intervention should be implemented at an earlier stage if conservative therapy has failed. There are several reasons for the epidemic increase in obesity, including changing lifestyle habits (excessive intake of food rich in calories/fat and lack of physical activity) which interact with genetic predispositions and thus lead to an increase in the body’s fat content.

The objectives of obesity therapy are as follows:

- To reduce energy intake,
- to increase the patient’s energy consumption,
- and thus help the body to achieve a new energy balance.

Obesity is a chronic disease and should not be merely regarded as a biological variant. According to an analysis for 1993 in the Federal Republic of Germany, commissioned by the German Federal Ministry of Health, over € 420,000,000 in healthcare costs were related to obesity, not including comorbidities.
What is the annual cost of obesity in the US?

Costs of cardiovascular disease due to overweight	Direct costs: $ 6.99 billion (17% of $ 40.4 billion total cost of cardiovascular disease, excluding infarction)	Indirect costs:
Costs of type 2 diabetes mellitus due to overweight	$ 63.14 billion (more than 60% of the total costs due to type 2 diabetes mellitus)	
Costs of osteoarthritis due to overweight. Total costs: $ 17.2 billion	$ 4.3 billion	$ 12.9 billion
Cost of arterial hypertension due to overweight	$ 3.23 billion (17% of the total costs related to hypertension)	
Costs of carcinomas due to overweight		
Post-menopausal breast cancer Total costs due to overweight: $ 2.32 billion	$ 840 million	$ 1.48 billion
Endometrial cancer Total costs due to overweight: $ 790 billion	$ 286 billion	$ 504 billion
Colon cancer Total costs due to overweight: $ 2.78 billion	$ 1 billion	$ 1.78 billion
Annual costs related to loss of productivity due to overweight in the US population (17 – 64 years of age)	$ 3.93 billion annually	
Comorbidities:

Obesity is considered to be causative for the following sequelae:
- Diabetes mellitus
- Cardiovascular disease
- Cerebrovascular stroke
- Hypertension
- Gall bladder disease
- Osteoarthritis (Degenerative bone disease)
- Sleep apnea
- Cancer (uterine, breast, colorectal, kidney and gall bladder)

Obesity is a contributing factor for the following:
- Hypercholesterolemia
- Pregnancy complications
- Menstrual disturbances
- Hirsutism
- Urinary stress incontinence
- Mental disease – dementia
- Increased surgical risk

This is a very low estimate of the true burden on the national economy since the comorbidities of obesity are unaccounted for and obesity is diagnosed only rarely in practice.

Obese people are much more likely to utilize outpatient and inpatient resources and need more medication, which results in higher costs than for individuals of normal weight.

On behalf of the German Federal Ministry of Health, the research institute Infratest ascertained the overall costs of obesity and its comorbidities in Germany. For the year 1995 the researchers found that obesity-related costs accounted for approximately 5.4% of the total healthcare costs in Germany, which was equivalent to more than €10 billion. Similar calculations of obesity-related costs in other western countries are consistent with the findings of the German study and demonstrate that obesity accounts for 2% to 8% of the total healthcare costs in these countries. On account of the continued rise in the incidence of obesity there is bound to be a further cost increase.

In addition, new scientific findings are being published constantly. For example, study results were published in 2004 for the first time indicating that life expectancy can be shortened by morbid obesity and extended again by weight reduction after gastric bypass surgery. Findings in 2005 indicate that the probability of subsequent dementia is increased by overweight and obesity in middle age. That is the result of a US study conducted by researchers at the “Kaiser Permanent Division of Research” in 2005, at the baseline of which more than 10,000 men and women aged between 40 and 45 underwent a medical examination. 27 years later 7% had fallen ill with dementia. Compared to people of normal weight, obese individuals had a 74% higher risk of disease while in the case of overweight individuals the figure was 35%. Women were particularly affected. Due to obesity the risk of dementia rose by 200% but for men it only rose by 30%.

Historically, all attempts at treating morbid obesity (defined as a BMI > 40 kg/m²) by administration of medication and other conservative methods have produced only minor or transient effects. As a result, surgical treatment has gained widespread acceptance in recent decades due to its superior outcomes. The criteria for any highly elective bariatric operation were established some 20 years ago: *effectiveness and safety of the method, long-term stability, and minimal adverse effects*. Numerous surgical procedures were initially attempted and later abandoned because they were either ineffective or produced too many complications; this was particularly the case with the various intestinal bypass procedures, such as the jejuno-colic and the jejuno-ileal bypass. The Roux-en-Y gastric bypass became established in the 1980s and 90s, mainly in the United States and southern Europe. In 1991, the *National Institutes of Health (NIH) Consensus Development Conference* recommended the method with vertical gastroplasty as the only available surgical procedure for obesity that has continued beyond the experimental phase.

Gastric bypass procedures are currently considered to be the gold standard for bariatric surgery in the United States. At a consensus conference in 2004 the *European Association for Endoscopic Surgery* summarized the current situation with regard to surgical treatment of obesity and published it in the journal *Surgical Endoscopy* in 2005. This consensus founded on evidence-based studies can provide practical assistance when selecting surgical methods.

1.1 Operative Procedures in Bariatric Surgery

Current surgical procedures are based upon three different therapeutic approaches:

1. **Restrictive procedures**
2. **Mixed procedures: restrictive and malabsorptive**
3. **Malabsorption**
In our view the outcomes of the gastric bypass procedure are convincing in terms of weight reduction and improvement in the quality of life. However, one should always bear in mind that surgical treatment of obesity is non-causal and there is no ideal operative procedure, nor will there ever be one.

Here is a list of the most important procedures (detailed in WEINER, 2006):

- Jejuno-ileal bypass (obsolete)
- Roux-en-Y gastric bypass
- MASON’s original retrocolic loop gastric bypass (obsolete)
- Biliopancreatic diversion (SCOPINARO)
- Biliopancreatic diversion with duodenal switch
- Vertical banded gastric bypass (FOBI/CAMPELLA)
- Gastric band, adjustable
- Gastric band (non-adjustable) (obsolete)
- Vertical gastroplasty – without disruption of continuity (MASON)
- Vertical gastroplasty – with disruption of continuity (McLEAN)
- Horizontal gastroplasty (obsolete)
- Sleeve gastrectomy (as stage 1 of BPD-DS)
- Various types of gastric pacemaker (in studies only)

1.2 Indications for Surgery

According to internationally accepted criteria (Tab. 1), the indications for bariatric surgery are a BMI > 40 kg/m² (in exceptional cases: BMI > 35 kg/m² with pronounced comorbidity). The National Institutes of Health (NIH) criteria of 1991 also stipulate several failed non-surgical attempts at weight reduction under the guidance of a physician over a period of two or more years, the absence of surgical contraindications or concomitant disease, the approval of the health insurance company for covering the costs, and the patient’s written informed consent. Nevertheless, limits to the indication for surgery continue to be the subject of active discussion. For example, diabetes specialists suggest a BMI level of 32 in patients with type 2 diabetes as an indication for surgery.

The general exclusion criteria involve organ-related causes of obesity (endocrine disease), severe mental disorders (schizophrenia, florid drug addiction or severe depression), severe concomitant disease (tumors), patients under 18 or over 65 years of age, and an increased surgical risk (relative contraindications).

Indications for surgery (according to I.F.S.O.)

<table>
<thead>
<tr>
<th>BMI > 40 for more than 3 years. Conservative therapy – preferably under the guidance of a physician or self-help group – has failed or showed only transient success.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusion of endocrine causes, alcohol or drug abuse. (Endocrine disease)</td>
</tr>
<tr>
<td>Severe metabolic disease, such as metabolic syndrome or sleep apnea syndrome associated with an urgent need for weight reduction, thereby corroborating the suggested indication for surgery.</td>
</tr>
<tr>
<td>Under normal circumstances, endogenous depression should be considered a contraindication for the surgical approach, but not reactive depression. (Schizophrenia, florid drug addiction, severe depression)</td>
</tr>
<tr>
<td>As a matter of principle, surgical procedures for the purpose of weight reduction should not be undertaken in individuals under the age of 18 (exception: consent of a multidisciplinary team)</td>
</tr>
</tbody>
</table>

Tab. 1:

Criteria for surgery for the purpose of weight reduction as defined by the “International Federation for Surgery of Obesity (I.F.S.O.”)

BMI > 40 for more than 3 years. Conservative therapy – preferably under the guidance of a physician or self-help group – has failed or showed only transient success.

Exclusion of endocrine causes, alcohol or drug abuse. (Endocrine disease)

Severe metabolic disease, such as metabolic syndrome or sleep apnea syndrome associated with an urgent need for weight reduction, thereby corroborating the suggested indication for surgery.

Under normal circumstances, endogenous depression should be considered a contraindication for the surgical approach, but not reactive depression. (Schizophrenia, florid drug addiction, severe depression)

As a matter of principle, surgical procedures for the purpose of weight reduction should not be undertaken in individuals under the age of 18 (exception: consent of a multidisciplinary team)

The overweight and obese classifications are defined by the BMI formula as follows (Tab. 2):

\[
\text{BMI} = \frac{\text{Body weight kg}}{\text{Height (m)}^2}
\]

<table>
<thead>
<tr>
<th>BMI kg/(m)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
</tr>
<tr>
<td>Normal weight</td>
</tr>
<tr>
<td>Overweight</td>
</tr>
<tr>
<td>Stage I obesity</td>
</tr>
<tr>
<td>Stage II obesity</td>
</tr>
<tr>
<td>Stage III extreme obesity</td>
</tr>
</tbody>
</table>

Tab. 2:

Classification of weight by body mass index (BMI: Body Mass Index) according to “WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry.”
2.0 Historical Background of the Roux-en-Y Gastric Bypass

In the mid-1960s, MASON observed that the Billroth II gastric resection and gastrectomy were often associated with a loss in body weight. This prompted Mason to develop the currently obsolete retrocolic loop gastric bypass. The technique created a small gastric pouch, which would quickly lead to the sensation of satiety and “dumping” symptoms after the intake of too many sweets.

ALDEN simplified the operation by stapling the stomach crosswise and anastomosing it with a jejunal limb in the antecolic position. Griffen later modified this procedure and created an anastomosis of the jejunum at a higher position by using a retrocolic Roux-en-Y limb.

Bariatric surgery always involves a high degree of uncertainty and risk regardless of the procedure applied. Multiple factors contribute to the high morbidity of extremely obese patients. It is mandatory that preoperative risk evaluation be undertaken prior to scheduling any surgery. Preoperative conditioning and, quite definitively, a minimally invasive surgical technique can minimize postoperative complications, especially pulmonary ones.

In general, the introduction of laparoscopic techniques has led to a broader implementation of bariatric surgery and improved patient compliance. The various operative techniques adopt different therapeutic approaches: Restrictive, malabsorptive and mixed procedures.

3.0 Laparoscopic Roux-en-Y Gastric Bypass

This is a combined procedure where restriction is complemented by a malabsorptive component to suit requirements. The size of the pouch and length of the intestinal limbs continue to be the subject of active discussion. Proper performance of a laparoscopic gastric bypass (LGB, Laparoscopic Gastric Bypass) is a challenge for the surgeon. In the literature the procedure is also abbreviated to LRYGBP (Laparoscopic Roux-en-Y Gastric Bypass). The procedure produces convincing results both in terms of reducing body weight and improving quality of life. Besides iron deficiency the most common side-effect is the dumping syndrome, which can have an adverse effect on the patient. It depends on the surgical technique. Circular anastomoses along the lesser curvature of the stomach are linked to postoperative dumping much more frequently than hand-sewn anastomoses along the greater curvature.

Since the gastric bypass is considered to be the gold standard for bariatric surgery in the United States, the number of laparoscopic gastric bypass operations can be expected to increase rapidly, in Europe as well. In 1994, WITTGROVE was the first to perform the procedure using a laparoscopic approach. He has subsequently performed more than 1,000 procedures. The number of procedures continues to rise dramatically though at US centers. Numerous studies have been published involving more than 1,000 laparoscopic operations per center. In 2003 the number of interventions reached 140,000 a year in the US, a record figure. A further increase has now been stopped by the US insurance companies.

The results of weight reduction in the first postoperative years are convincing, although by comparison with laparoscopic gastric banding the mortality is five times as high according to a meta-analysis by BUCHWALD et al. (2004) (0.1% vs. 0.5%). On the other hand, follow-up surgery is far more frequent after gastric banding. Laparoscopic conversion surgery after a gastric bypass is a rare occurrence. It usually involves conversions due to insufficient weight reduction, from a proximal bypass to a distal one. In our own patient group the incidence is < 0.5% relative to the number of primary p.a. bypass operations. In the case of gastric banding, on the other hand, re-operation rates can be up to 15%. More than half the cases are port and sleeve complications. They are minor complications and can often be corrected under local anesthesia.
4.0 Technique

The patient is placed in the reversed Trendelenburg position on an operating table approved for the patient’s weight. Video monitors are positioned on the right and left side, above the patient’s shoulders. Both arms are placed in a stretched-out position (Fig. 3a). A transurethral urinary catheter is placed, and the surgical site is disinfected repeatedly. Cephalosporin is given for antibiotic prophylaxis.

Using a threaded TERNAMIAN EndoTIP trocar cannula (KARL STORZ, Fig. 2), the pneumoperitoneum is established in the left hypogastric fossa until intraabdominal pressure is 15 mmHg.

Fig. 2
A threaded TERNAMIAN EndoTIP trocar cannula (KARL STORZ) is used to establish the pneumoperitoneum safely.

Fig. 3a
Patient positioning and working positions of the surgery team in the laparoscopic gastric bypass operation.

Fig. 3b
1) Umbilical optical port for rigid HOPKINS® rod-lens telescope, available in various directions of view, coupled to the endoscopic camera system.
2) Right upper quadrant port for retracting the left lobe of the liver with the liver retractor.
3) Epigastrium above the left hepatic lobe in the direction of the right costal arch (port for operating instruments).
4) Similar to position 3, except that it points toward the left costal arch and maintains a minimum distance of at least 10 cm (port for operating instruments).
5) Below the costal arch (port for operating instruments, e.g. a Babcock grasper for holding the stomach).
It is essential that there be sufficient free space in the cranial position to permit unimpeded access to the gastrointestinal anastomosis. Accordingly, the initial port should be placed at an approximate distance from the xyphoid that corresponds to the distance between the index finger and the thumb (Fig. 4). The 15 cm (extra long) trocar is especially well suited for use in patients with a BMI > 50.

The other trocars (Fig. 2b, p. 11) are then placed successively. Once the camera trocar port is established, an 11 mm trocar for insertion of the liver retractor is placed below the right costal arch. The liver retractor is then securely attached to an instrument holder and can be used to elevate the greater omentum. Subsequently, a 13 mm trocar is placed at the lateral abdominal wall below the left costal arch. The two epigastric working trocars (13 mm) are inserted such that they provide an optimal working angle for surgical maneuvers in the area of the hiatus. The distance between the working trocars should be large enough to avoid any obstructions.

Usually, HOPKINS® rod-lens telescopes with 30° and 45° directions of view are inserted. The use of extra long telescopes (42 cm) and extra long instruments (43 cm) can be an advantage, particularly in obese men. That also applies to instrument length (43 cm).

Where the anastomosis between the gastric pouch and the jejunal limb is to be carried out with a circular stapler, the use of two gas insufflation units is recommended for adequate compensation of the gas loss often associated with this technique.

In the event of gas loss, the heavy weight of the abdominal walls jeopardizes the continuation of the laparoscopic procedure. After insertion of the 11 mm trocar, the abdominal cavity is inspected with a 30° telescope. The other 13 mm trocars (for linear staplers) are inserted under constant endoscopic control.

The hiatal region is exposed using the liver retractor, which is securely attached to the instrument holder. Due to the frequent presence of hepatic steatosis, sturdy and extra long retractors must be used in this step. The authors prefer to use retractor 30623 UR (KARL STORZ) (Figs. 5a and 5b).
Once inspection of the abdomen has been completed, the hiatus and cardia are exposed. The anatomical landmarks, such as the caudate lobe on the left side of the liver, the right diaphragmatic crus, and the angle of His, are then identified. Preferably dissection should commence at the angle of His such that this structure is mobilized. That makes it much easier to visualize the subsequent target direction of the staple line because in many cases there are axial hiatal hernias. The cranial vasa brevia can be transected using an ultrasonic dissector if they are able to exert excessive strain on the spleen. The left diaphragmatic crus is then exposed, enabling subsequent completion of the pouch at the angle of His. Next, the lesser gastric curvature is dissected approx. 2 cm distal from the gastroesophageal junction and extended into the omental bursa using the ultrasonic dissector under constant endoscopic vision. Usually, the correct site is located proximal or distal to a large prominent vein running parallel to a side branch of the sinistral gastric artery across the anterior gastric wall. Dissection may involve some minor hemorrhage.

The stomach is completely transected using multiple cartridges of a 3.5 mm/45 mm linear stapler (Figs. 6a, b), creating a new gastric pouch. The latter should only have a small capacity. Consequently, the degree of restriction is determined and the risk of subsequent complications like ulcers and pouch dilation is minimized.

The preferred volumes nowadays range from 15 ml to 25 ml so they are much smaller than they were in the days of open surgery, where volumes of up to 90 ml were permitted. During the learning phase a nasogastric tube with a balloon tip can be useful during this step. There is often hemorrhage from the staple line.

However, it must not be stopped with electrocautery (Fig. 7) since this may induce delayed necrosis. Clips can be applied for temporary management of spurting vessels (Fig. 8). To prevent hemorrhage from the staple line bioabsorbable membranes (e.g. Seamguard®, Gore) can be used. Smooth and neat resection margins are optimal for anastomosis (Fig. 10, p. 14).
There is always a risk of the staple line opening partially and forming a suture dehiscence with restoration of pouch continuity to the remainder of the stomach. Generally speaking, the gastrogastric fistula is a surgical error that consists of incomplete disruption of stomach continuity. It therefore occurred more frequently in the days of open surgery because vision was limited and use of staplers was more difficult. Small bridges between the pouch and the remainder of the stomach were often overlooked near the spleen.

Continuous over-and-over suture of the resection lines can minimize the risk of staple line dehiscences, as can staple line reinforcement using bioabsorbable materials (e.g., Seamguard®, Gore).

Fig. 9 Determination of the dissection plane in the area of the lesser curvature.

Fig. 10 Creation of the stomach pouch should be performed with a clearly defined resection line.

Fig. 11 Formation of a retrogastric tunnel for insertion of the linear stapler.

Fig. 12 Transverse resection of the stomach with a linear stapler.
4.1 Gastrojejunostomy

With the transverse colon in a turned-up position, the ligament is identified clearly and an oral jejunal limb is selected that reaches the upper abdomen without tension. For this purpose, the greater omentum should be transected to reduce tension if it contains a substantial amount of fat (Figs. 13, 15–18b). As a rule, the lowest point of this limb resides approx. 50 cm from the ligament of Treitz (Fig. 19). It is easiest to transect the jejunum now using a stapler (white cartridge) (Fig. 20). Prior to this step, the mesentery is skeletonized using the ultrasonic dissector. It is quite feasible to attach the limb to the pouch first and only transect the jejunal limb after anastomosis.

The oral and aboral limbs must remain identified unambiguously. The consequences of any confusion would be disastrous.

To minimize the incidence of bile reflux, which is rather unresponsive to conservative therapy, a minimum length of 50 cm should be maintained for the biliodigestive limb. This also facilitates any early or late revision surgery. Some variations of the bypass use a larger distance but are associated with a higher risk of malabsorption. The RUTLEDGE mini-bypass entails a higher risk of bile reflux because the biliodigestive limb takes the digestive juices into the alimentary limb via the anastomosis.

There are three basic methods of limb routing for gastrojejunostomy:

1. antecolic (author’s preference) and antegastric
2. retrocolic and antegastric, and
3. retrocolic and retrogastric.

The antecolic approach is surgically easier but it is longer in terms of the distance between the upper jejunal limb and the gastric pouch, which has to be bridged. For this reason the lack of tension should be verified at the outset if the mesocolon contains a substantial amount of fat and/or the body is very long (> 190 cm). If there is tension, the retrocolic and retrogastric routes must be used.

In terms of technique, the following types of anastomoses can be distinguished:

1. Circular end-to-end anastomosis stapling
2. Linear end-to-end anastomosis stapling (as illustrated in Fig. 14).

Fig. 13
Basic principle of omentum majus transection.

Fig. 14
Basic principle of the linear end-to-end anastomosis stapling technique (posterior wall).
4.1.1 Circular End-to-End Anastomosis Stapling

The use of circular staplers can make it easier to perform gastrojejunostomy, although extremely thick abdominal walls make it difficult to guide the stapler properly. It is often difficult to pass the anvil abdominally through the small opening created in the gastric pouch (Fig. 21). The anvil can be introduced to the pouch through the opened remainder of the stomach before the last stomach bridge between the pouch and the fundus is transected.44
Fig. 19
The small intestinal limb is measured and marked with a suture (50 cm from Treitz’s ligament).

Fig. 20
Transection of the jejunal limb at a point distant enough so the pouch can be reached without tension.

Fig. 21
The anvil is passed through the opening in the gastric pouch.

Fig. 22
The pouch is grasped and the stapler head advanced through the created opening; the jejunal limb is already fixed to the pouch.

Opening the pouch along the staple line causes defects that have to be closed again. The use of a specially designed “anvil grasper” simplifies this maneuver (Fig. 22). At all events, when the pouch has been opened the anvil should be secured with a purse-string suture (Fig. 23). If the anvil is being introduced transorally, there is no need for this maneuver but placement and transport problems can occur with the anvil.

Fig. 23
The anvil is secured in the pouch by a purse-string suture.
The opening of the jejunal limb must be created antimesenterically enough for the selected stapler to be introduced easily (Fig. 24). The stapler must be inserted while the limb is secured in position with grasping forceps (Fig. 25). A gentle twisting motion may facilitate passage of the stapler. Preliminary placement of fixation sutures can be helpful, ensuring that no undue tension is produced while connecting the anvil to the stapler head (Fig. 26). After completion of the anastomosis, the stapler must be removed very carefully since tactile sensitivity may be attenuated at this point (Fig. 27). The major incisions for the circular stapler are at risk of getting infected. Therefore, the stapler should be removed through the abdominal wall only with plastic film protection (Fig. 28). We observed local infection only after the use of circular staplers. Commercially available trocars for circular staplers are too short for use in obese patients. As an alternative option, plastic film can be used to maintain the pneumoperitoneum and protect the abdominal wall.

Fig. 24
Incision into the jejunal limb, which is spread open to insert the stapler.

Fig. 25
Insertion of the circular stapler.

Fig. 26
Connection of the anvil to the stapler head.

Fig. 27
Careful removal of the stapler after completion of the anastomosis.

Fig. 28
After completion of the anastomosis, the circular stapler is a potential source of infection and must not come into contact with the abdominal wall.
4.1.2 Linear Stapler Anastomosis

After fixation of the alimentary limb to the gastric pouch two congruent openings are made in the pouch and the antimesenteric limb side using an ultrasonic dissector. The linear stapler is introduced and the anastomosis is “shot”. Then the stapler is removed and the staple line is inspected for spurting hemorrhage. After that the nasogastric tube is placed and the opening is closed with a continuous suture.

4.1.3 “Hand-Sewn” Anastomosis

After fixation of the alimentary limb to the pouch and opening 1.5 cm of the intestine and stomach the latter can each be closed with a continuous suture in the region of the posterior and anterior walls. While the nasogastric tube is still in position, securing single button sutures are placed at both ends of the anastomotic suture in order to reduce the tension from the anastomosis.

If using linear staplers, as in the case of “hand-sewn” anastomoses, only 13 mm trocars are required. Wound infections are less likely under these circumstances since there is no need to punch any tissue and the stapler can be passed through the trocar without coming into contact with the abdominal wall.

In 585 anastomoses using linear stapler suture and “hand-sewn” suture (see Figs. 29 a – c) we have not seen a single wound infection. The diameter of the anastomosis should be at least 8 mm. After completion of the learning curve (the first 100 operations) we inserted an 8 mm nasogastric probe for determination of anastomotic size only. After completion of the anastomotic suture and laparoscopically controlled removal of the probe we dispensed with stabilization of the anastomosis by reinsertion of a postoperative indwelling probe. Since post-operative anastomotic insufficiencies are associated with high rates of morbidity and mortality, a leak test with methylene blue solution is performed during the operation. For this purpose, clips are applied to briefly exert pressure on the jejunum at the distal end of the nasogastric tube and methylene blue solution is injected under pressure through the NG tube. Any leakage detected requires immediate repair by manual seromuscular suture.

Alternately, intraoperative gastroscopy can be performed with gas insufflation. When doing so, gas bubbles should be observed after the instillation of liquid into the hiatal region. Superior mastery of suture skills and sturdy needle holders are fundamental to ensure that the suture is safely placed, even at extreme working angles. In the hands of the authors, the KOH Macro Needle Holder 26173 KC (KARL STORZ) produces outstandingly good results. In general, fixation sutures should be placed between the descending jejunal limb and the gastric pouch to ensure that traction on the anastomosis from the weight of the mesentery is reduced when the patient is mobilized early.
4.2 Jejuno-Jejunal Anastomosis

The next step is to identify the Treitz ligament again and fix the biliodigestive limb with a retaining thread, followed by localization of the anastomosis. The jejuno-jejunal anastomosis is created at a distance of 120 – 150 cm from the site of gastrojejunostomy, depending on the patient’s BMI. A general rule of thumb is: The higher the BMI, the longer the alimentary limb. It is not so much energy malabsorption as the hormonal diversion that leads to higher weight reduction. The differences in weight reduction are only minimal and in the main they are only found in patients with a high BMI so evidence has only been published in a few studies.

Measuring the length of the alimentary limb is conducted antimesenterically, as with the biliodigestive limb. For this purpose special atraumatic grasping forceps with length marks on the sheath (Figs. 18a and 18b) are used. These marks at intervals of 5 cm and 10 cm make it much easier to measure intestinal lengths accurately. The limbs are placed along the sheaths without stretching them too much. The intestinal lengths can be determined quickly and reliably with two grasping forceps using both hands.

The entero-enteric anastomosis is created by applying the side-to-side technique using a 45 mm linear stapler (Fig. 30). For this purpose, an incision must be placed first in the antimesenteric aspect of the jejunum (Fig. 31). The linear stapler is then inserted into the jejunal limbs, once they are aligned parallel to each other (Fig. 32). This can be conducted either orally or aborally. In order to avoid stenoses the staplers can be used in both directions.
A continuous suture is applied to close the remaining enterotomy employing absorbable suture material (Fig. 33). When closing the openings with a linear stapler, stenoses often occur so two cartridges should be used here for the anastomosis, one orally and one aborally. At this site it is difficult to perform a leak test using methylene blue solution. As such, profound proficiency in laparoscopic technique is mandatory. It is important to check for any hemorrhage from the staple line prior to closure of the enterostomy (Fig. 34). Any hemorrhage must be stopped by placement of a suture. With staple line reinforcement (e.g. Seamguard®, Gore) it is possible to reduce the risk of hemorrhage drastically.

It is also important not to generate a dead end to avoid manifestation of symptoms of blind limb syndrome (Fig. 35). The completed anastomosis should be free of any signs of leakage when pressure is exerted on it (Fig. 36).

Normally, two drains are placed, one near the gastrojejunostomy and the other near the jejuno-jejunal anastomosis. An easy-flow drain can reach both anastomoses.
4.3 Postoperative Phase

Since tachycardia occasionally is the only sign of significant problems, postoperative monitoring in the ICU is of particular importance. In the case of persistent tachycardia (HR > 120 bpm) an early re-laparoscopy should be considered because other diagnostic procedures only supply a limited amount of information. The patient should be mobilized on the evening of the day of surgery. A high incidence of atelectasis and low oxygen saturation often makes breathing exercises (e.g. Triflow) necessary for this group of patients.

All patients should be given thrombosis prophylaxis and low molecular weight heparin (at a dose adjusted to body weight).

If the patient has a history of deep vein thrombosis, we begin with intermittent mechanical compression by machine as soon as the anesthesia is induced and it is continued in the ICU.

If the nasogastric tube was placed intraoperatively, it is removed 24 hours after at the latest. In the learning phase a postoperative anastomosis check should be conducted between the first and second day after the operation in the case of a primary gastric bypass. After performing 264 problem-free operations we dispensed with this diagnostic procedure. As from the second day after the operation liquid alimentation can be commenced. The drain is removed 36 hours after the operation. Postoperative alimentation must first be restricted to fluids (soups). After a 3-week diet of fluids, a bland diet can be initiated (white meat, cooked fish, easily digestible, low-fiber, and no raw vegetables or fruit). Supplementation is also commenced at this point in time. While serious disturbances of the wound healing processes tend to be rare, hematomas and seromas occur occasionally at the trocar sites.

5.0 Results

Bypass operation outcomes with respect to weight loss and improvement in the quality of life are convincing, provided the operation is performed at centers with a sufficiently large patient population. WITTGROVE had already performed 1,500 operations by the year 2001. The general rate of complications (thrombosis, embolism, postoperative hernia, etc.) of the laparoscopic procedure is clearly lower as compared to the patient population subjected to laparotomy. The laparoscopic approach requires the surgeon to have special expertise and practical skills, and the learning phase is quite long. Weight loss outcomes for the Roux-en-Y bypass are impressive. Laparoscopic conversion surgery after gastric bypass is a rare occurrence.

In our group of patients conversions from the proximal bypass to the distal bypass after a therapy failure are rare, accounting for 2–3 interventions a year. The extremely long duration of the surgery with the patient in the reversed Trendelenburg position accounts for the relatively high rate of complications and mortality, aside from the challenging nature of the procedure. If the duration of surgery is allowed to extend for a very long period, deep vein thrombosis and other thromboembolic complications must be anticipated.

The complication rate of the laparoscopic approach is in the range of 6.7 – 15%. The rate of 6.7% for minor and major complications as reported by SCHAUER et al. and the rate of 12.6% reported by WITTGROVE seem very low. The mean follow-up in these cases was only 12.5 months, which may be too short an interval to allow for a conclusive statement. 15% major complications in the documentation by GAGNER et al. appear to be more realistic on the other hand.
5.1 Mortality

The comprehensive meta-analysis by BUCHWALD (2004) reported a mortality rate of 0.5% for the gastric bypass. The rate is therefore 5 times higher than after a gastric banding operation (0.1%) but only half the figure for BPD and duodenal switch (1.1%). Extremely long operating times in the reverse Trendelenburg position would suggest a relatively high complication density and hence mortality, no matter how sophisticated the procedure is. Deep vein thrombosis and other thromboembolic complications are to be expected relatively frequently. Operating times fluctuate substantially (Tab. 3).

Data published by various authors on laparoscopic gastric bypass operations

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Operations</th>
<th>BMI</th>
<th>Operating time (min.)</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lönroth et al.</td>
<td>1996</td>
<td>O</td>
<td>8</td>
<td>38</td>
<td>250</td>
</tr>
<tr>
<td>Gustavsson & Westling</td>
<td>1998</td>
<td>A</td>
<td>32</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Wittgrove & Clark</td>
<td>1998</td>
<td>A</td>
<td>300</td>
<td>n.m.</td>
<td>240**</td>
</tr>
<tr>
<td>Wittgrove & Clark</td>
<td>1999</td>
<td>A</td>
<td>500</td>
<td>n.m.</td>
<td>135</td>
</tr>
<tr>
<td>Gagner et al.</td>
<td>1999</td>
<td>A</td>
<td>52</td>
<td>55</td>
<td>241</td>
</tr>
<tr>
<td>Schauer et al.</td>
<td>1999</td>
<td>A</td>
<td>15</td>
<td>56</td>
<td>280</td>
</tr>
<tr>
<td>Schauer P</td>
<td>1999</td>
<td>O</td>
<td>1</td>
<td>53</td>
<td>408</td>
</tr>
<tr>
<td>Westling et al.</td>
<td>1999</td>
<td>A</td>
<td>51</td>
<td>55</td>
<td>n.m.</td>
</tr>
<tr>
<td>Schweitzer et al.</td>
<td>1999</td>
<td>O</td>
<td>8</td>
<td>n.m.</td>
<td>145 – 270</td>
</tr>
<tr>
<td>Lönroth et al.</td>
<td>2000</td>
<td>A</td>
<td>76</td>
<td>43**</td>
<td>n.m.</td>
</tr>
<tr>
<td>Schauer et al.</td>
<td>2000</td>
<td>O</td>
<td>275</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Wittgrove & Clark</td>
<td>2000</td>
<td>O</td>
<td>500</td>
<td>n.m.</td>
<td>n.m.</td>
</tr>
<tr>
<td>Huerta et al.</td>
<td>2001</td>
<td>O</td>
<td>364</td>
<td>46</td>
<td>n.m.</td>
</tr>
<tr>
<td>Higa et al.</td>
<td>2001</td>
<td>O</td>
<td>1500</td>
<td>n.m.</td>
<td>up to 60</td>
</tr>
<tr>
<td>Nguyen et al.</td>
<td>2001</td>
<td>O</td>
<td>51</td>
<td>45</td>
<td>232 ± 43</td>
</tr>
<tr>
<td>Westling et al.</td>
<td>2001</td>
<td>O</td>
<td>30</td>
<td>42</td>
<td>n.m.</td>
</tr>
<tr>
<td>Gould et al.</td>
<td>2002</td>
<td>O</td>
<td>223</td>
<td>49</td>
<td>n.m.</td>
</tr>
<tr>
<td>Korenkov et al.</td>
<td>2002</td>
<td>A</td>
<td>5</td>
<td>56.7</td>
<td>270 – 450</td>
</tr>
<tr>
<td>DeMaria et al.</td>
<td>2002</td>
<td>O</td>
<td>281</td>
<td>48.1</td>
<td>162 – 234</td>
</tr>
<tr>
<td>Papsavas et al.</td>
<td>2002</td>
<td>A</td>
<td>107</td>
<td>48.5</td>
<td>n.m.</td>
</tr>
<tr>
<td>Biertho et al.</td>
<td>2003</td>
<td>O</td>
<td>456</td>
<td>49</td>
<td>n.m.</td>
</tr>
<tr>
<td>Schwartz et al.</td>
<td>2003</td>
<td>O</td>
<td>600</td>
<td>n.m.</td>
<td>170</td>
</tr>
<tr>
<td>Tieu et al.</td>
<td>2012</td>
<td>O</td>
<td>1100</td>
<td>39.8</td>
<td>155</td>
</tr>
<tr>
<td>Brolin & Lin</td>
<td>2012</td>
<td>O</td>
<td>1069</td>
<td>42.2</td>
<td>n.m.</td>
</tr>
<tr>
<td>Results of the authors</td>
<td>2012</td>
<td>O</td>
<td>2347</td>
<td>32 – 83</td>
<td>59</td>
</tr>
</tbody>
</table>

* Hand-assisted (pneumo-sleeve)
** In the last 20 cases: 120 min
*** BMI 22 – 66
**** A: Abstract
***** O: Original paper

Tab. 3:
Data of primary laparoscopic gastric bypass operations.
5.2 Morbidity

16% surgery-related health disorders (332/ 2073) were calculated by GENTISCHELI et al. (2002)14 based on the published data of a literature review with an evidence level of more than II.

A broad range of variation (6.7 –75%) was observed in laparoscopic "hand-assisted" operations.42

For comparison: The incidence of complications in the days of "open" surgery (involving abdominal incision) was as high as 16%. The study by SEE et al.43 reported the following complication rates:

- 13% Revision surgeries
- 4.9% Anastomotic insufficiency
- 2.4% Intestinal obstructions (ileus)
- 1.2% Splenectomy
- 1.2% Pulmonary embolism
- 0.8% Ulcers at the site of anastomosis
- 1.8% Ulceration

<table>
<thead>
<tr>
<th>Number of Operations:</th>
<th>69</th>
<th>69</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>39</td>
<td>39.7</td>
<td>39</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>130</td>
<td>124.8</td>
<td>124.8</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>45.7</td>
<td>44.7</td>
<td>45.9</td>
</tr>
<tr>
<td>Duration of surgery (min.)</td>
<td>193</td>
<td>163+</td>
<td>151++</td>
</tr>
<tr>
<td>Overall morbidity (%)</td>
<td>20.3</td>
<td>21.7</td>
<td>20.3</td>
</tr>
<tr>
<td>Major complications (%)</td>
<td>10.1</td>
<td>7.2</td>
<td>1.4+++</td>
</tr>
</tbody>
</table>

Tab. 4: Outcomes of laparoscopic bypass surgery and learning curve effect (SUTER et al., 2003).48

In a series of patients treated at Sahlgrenska University Clinic in Gothenburg, Sweden, three "leaks" (anastomotic dehiscences) and six cases of hemorrhage were observed among the first 76 patients. One patient died from hemorrhage that blocked the lumen in the region of the gastroenteroanastomosis and led to dilation and perforation of the stomach. In addition, after the operation many patients suffer from vomiting and a dumping syndrome if they have failed to adhere to the nutritional rules strictly. Morbidity, especially the incidence of major complications, is dependent on the operating surgeon’s experience. SUTER et al. (2003)48 divided their patient population into three groups. The duration of surgery and the incidence of major complications showed a significant decrease with increasing number of operations performed, providing a clear correlation with the experience of the surgeon (Tab. 4). Generally speaking, the hospital stay is becoming shorter in the US and it is being shortened further by laparoscopic procedure and increasing experience (Tab. 5).

5.3 Conversion Rate

GENTISCHELI et al. (2002)14 calculated a mean conversion rate of 2.4% for evidence-based LGB series published up to and including 2002 (50/2,073). The complexity of the intervention means that an initially high conversion rate and a long learning phase are to be anticipated. A conversion rate of 33% (7/21) was reported by WESTLING (1999 A) in his initial series. LÖNROTH et al. (1996)26 reported a conversion rate of 25%, mainly due to technical difficulties and complications. Note that these are initial results only. Once a surgeon has performed several hundred procedures, the conversion rate tends to approach zero.

5.4 Reasons for Conversion

The most common reasons for conversion are related to technical difficulties in completing the operation within a reasonable and justifiable period of time. BALTASAR et al. (1998)3 converted because of hemorrhage, inability to insert the stapler into the esophagus, technical failure of the stapler and difficulties in creating the retrogastric tunnel.

Organ perforation was another common reason (LÖNROTH et al., 1996).26 A short, fat-rich mesentery is another reason for conversion, provided it is found impossible to sufficiently mobilize the mesentery (LÖNROTH et al., 1998).26 Generally speaking, previous abdominal surgery causes both the conversion rate and the operating time to rise. This applies not only to upper abdomen interventions but also to previous surgery in the true pelvis, where the omentum and jejunal limbs can be fixed in place. Cesarean section deliveries also rank among the previous events that can complicate a laparoscopic gastric bypass.
Gastric Bypass Studies Reporting Operating Times and Duration of Hospital Stay

<table>
<thead>
<tr>
<th>Study</th>
<th>Open surgery (open) or laparoscopy (lap.)</th>
<th>Number of patients</th>
<th>Operating time (min.)</th>
<th>Hospital stay (days)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeMaria EJ et al.</td>
<td>lap.</td>
<td>281</td>
<td>234 ±77 reduced to 162 ±42</td>
<td>Stay: 4; Range: 2–91; Median: 2; 75% of patients are discharged within 3 days</td>
<td>69% follow-up after 1 year</td>
</tr>
<tr>
<td>Higa KD et al.</td>
<td>lap.</td>
<td>400</td>
<td>60 – 90</td>
<td>1.6 days lap. surgery 2.7 days after conversion to open surgery</td>
<td></td>
</tr>
<tr>
<td>Huerta S et al.</td>
<td>open</td>
<td>182 in '98/99 (Group I)</td>
<td>Group I – 4.05</td>
<td>Group II – 3.17</td>
<td></td>
</tr>
<tr>
<td>Nguyen NT et al.</td>
<td>lap.</td>
<td>79</td>
<td>lap. – 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schauer PR et al.</td>
<td>lap.</td>
<td>275</td>
<td>4.95</td>
<td>5.38</td>
<td>No statistically significant difference</td>
</tr>
<tr>
<td>Smith SC et al.</td>
<td>open</td>
<td>3855</td>
<td>Mean: 78</td>
<td>Mean: 3.6</td>
<td></td>
</tr>
<tr>
<td>Deyligat B et al.</td>
<td>lap.</td>
<td>652 primary</td>
<td>4.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>open (16) or lap. (56)</td>
<td>72 secondary</td>
<td>5.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tieu K et al.</td>
<td>Robotic-assisted</td>
<td>1100</td>
<td>Mean duration of operation: 155 Min. (longer than RYGB)</td>
<td>– No mortality – Complications: ♦ 2 pulmonary embolism ♦ 3 deep vein thrombosis ♦ 1 leakage ♦ 9 bleeding</td>
<td></td>
</tr>
<tr>
<td>Brolin RE et al.</td>
<td>Prim. lap</td>
<td>836 (no leakage)</td>
<td>Operative group: 36 ±34 days EFS (endoscopic injection of fibrin sealant) 33 ±7 days</td>
<td>EFS (endoscopic injection of fibrin sealant). Provides safe and successful treatment of patients who develop gastric leaks after bariatric operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prim. open</td>
<td>114 (8 leakages)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revisional procedures</td>
<td>Revisional procedures: 8 + 5=13 (7 at gastrojejunostomy and 6 at staple line of upper pouch) 5 patients required reoperation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boza C et al.</td>
<td>lap.</td>
<td>LSG (lap. sleeve gastrectomy): 811</td>
<td>LRYGB (Lap. Roux-en-Y gastric bypass): 798</td>
<td>LRYGB: – compl. rate 7.1% – suture leak 0.7% – % EWL 1 Y: 97.2% ±24.3% 2 Y: 94.6% ±30.2% 3 Y: 93.1% ±25% cholesterol level at 1 Y: 169 ±32.9 mg/dl – rate of diabetes remission 86.6%</td>
<td>LSG: – compl. rate 2.9% – suture leak 0.5% – % EWL 1 Y: 86.4% ±26.4% 2 Y: 84.1% ±28.3% 3 Y: 86.8% ±27.1% cholesterol level at 1 Y: 193.8 ±38.7 mg/dl – rate of diabetes remission 90.9%</td>
</tr>
</tbody>
</table>
Gastric Bypass Studies Reporting Operating Times and Duration of Hospital Stay

<table>
<thead>
<tr>
<th>Study</th>
<th>Open surgery (open) or laparoscopy (lap.)</th>
<th>Number of patients</th>
<th>Operating time (min.)</th>
<th>Hospital stay (days)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romy S et al.</td>
<td>Lap. 442 (92.3% of patients were followed 6 y postop)</td>
<td>no information available</td>
<td>no information available</td>
<td>Early morbidity: after RYGBP 17.2% after GB 5.4%</td>
<td>
- weight loss was quicker
- maximal weight loss was higher
- weight loss after RYGBP was maintained significantly better during the 6-year follow-up period
At 6 years:
- more failures after GB (48.3% vs 12.3%).
- more long-term complications after GB (41.6% vs 19%).
- more reoperations after GB (26.7% vs 12.7%).
Comorbidities:
- More improvements after RYGBP</td>
</tr>
<tr>
<td>Spivak H et al.</td>
<td>Lap. Adjustable gastric banding (LAGB): 148
Lap. Roux-en-Y gastric bypass (LRYGB): 175</td>
<td>no information available</td>
<td>no information available</td>
<td>BMI loss levelled off from 5–7 y at 15 kg/m² for LRYGB and at 9 kg/m² for the LAGB.
At 7 y, (EWL) was 58.6% for LRYGB and 46.3% for LAGB
By 7 y, 19 LAGB patients (15%) had their bands removed.
By 10 y, 29 (22.8%) of bands had been removed
– LRYGB group had 9 (6.6%) serious life-threatening complications, whereas the LAGB group had none
– 1 death in LRYGB group.</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5:
5.5 Excess Weight Loss

Weight reduction outcomes are basically no different than the "open" gastric bypass. Excess weight loss (excess weight: current weight minus ideal weight) is between 72% and 82% within the first year after a Roux-en-Y bypass operation (Diagram 1).

However, there is also a slight increase in weight again after a few years. This is chiefly dependent on the compliance of patients, who ought to retain their nutritional habits of the first few years after surgery. Ultimately all the chiefly restrictive methods result in a gradual rise in weight after some years, as was demonstrated by the S.O.S. study recently. In the long term, only biliopancreatic diversion (Scopinaro) guarantees weight stability after a previous weight reduction.

M. SUTER et al. (2003) evaluated their results on the basis of success criteria and found the results to be very good (Diagram 2).

The BMI drops in parallel to the loss in excess weight (Diagram 3). This diagram shows the change in body mass index in patients with a BMI of less or more than 50 kg/m².

5.6 Improvement of Comorbidities

The meta-analysis by H. BUCHWALD et al. (2004) demonstrated that weight loss after all the surgical procedures, including bypass operations, leads to a sustained improvement in a large number of comorbidities. Diabetes mellitus disappeared completely in 76.8% of patients and was eradicated or improved in 86.0%. Hyperlipidemia improved in at least 70% of patients. Hypertension disappeared in 61.7% of patients and was at least influenced significantly in 78.5%. Obstructive sleep apnea was eradicated in 85.7% of patients and was improved significantly in 83.6% of patients. Sleep apnea syndrome often subsides after an excess weight loss of only approx. 20 kg. In the series described by MacDONALD (2001) the incidence of hypertension was effectively reduced from 59% before surgery to 21% after 5 years and 29% after 16 years following a gastric bypass operation. The specific effects of bypass surgery on diabetes mellitus are most significant. They are of a hormonal nature and cannot be explained solely by the weight reduction. Consequently, the effect of the gastric bypass operation is very different than the purely restrictive methods like gastric banding and gastroplasty.
In the study conducted by MacDONALD (2001)27 the prevalence of diabetes mellitus fell from 26% before the operation to 4% 5 years after the intervention and 7% 16 years after.

Generally speaking, complaints about the locomotor system can be influenced positively by weight reduction. In the MacDONALD study these were reduced from 29% to 4% after only 5 years. 16 years after gastric bypass surgery the rate of complaint increased again (15%), which may be explained as a normal result of aging. The scores from psychological tests showed a continuous improvement over the first 2 years. However, by the 5th year after the operation all the parameters had reached the preoperative baseline levels. This observation is a reflection of the fact that patients are slow in realizing that weight reduction does not solve all of their problems. Moreover, the initial success, consisting of rapid weight reduction, is soon over. Patients gradually begin to understand that a continuous diet and physical activity are essential for achieving optimal body weight.

The therapeutic effects of weight reduction by gastric bypass surgery on the cardiovascular risk are particularly impressive because here the metabolic syndrome is influenced positively as far as long-term therapy is concerned. MacDONALD (2001)27 reported a retrospective comparative analysis of morbidly obese diabetic patients with no weight-reducing surgical procedure versus a comparable group after gastric bypass surgery and found the rate of fatalities in the control group to be 4.5 times higher than in the group subjected to bypass surgery. Whereas 28% of the obese patients with diabetes in the control group died within the first 6.2 years of the follow-up period, only 9% of the bypass surgery patients died within a period of 9 years. The stated rate of fatalities includes perioperative mortality. The effect was particularly pronounced for cardiovascular morbidity, which accounted for 54.5% of the fatalities in the control group, but only 14.3% among patients subjected to gastric bypass surgery. These data are the best results published so far and indicate that gastric bypass surgery possesses the potential to drastically reduce the mortality and morbidity of obese patients.

A long-term study by FLUM and DELLINGER (2004)12 revealed that life expectancy shows a significant increase after successful gastric bypass surgery compared to obese patients not subjected to surgery. Of 66,109 obese patients subjected to follow-up 3,328 had been given a gastric bypass. The incidence of operations increased from 0.7 per 100,000 in 1987 to 10.6 per 100,000 in 2001. After 15 years 16.3% of non-surgery patients had died while only 11.8% of bypass patients had died.

It is not possible to deal with all the positive effects of weight reduction here. The therapeutic effect of gastric bypass surgery on an existing gastroesophageal reflux disorder is particularly significant. In many cases it is associated with an axial hiatus hernia. A diaphragmatic hernia can be caused by many factors. Chronic pressure rises in the abdominal space, and especially with obesity, often have to be linked to a diaphragmatic hernia.

20% of the population of western countries are suffering from a more or less pronounced diaphragmatic hernia. Women are more often affected than men, the ratio being 2:1. In the case of morbid obesity we succeeded in detecting a hiatus hernia in over 40% of cases during preoperative diagnosis. After gastric bypass surgery all the reflux symptoms disappear. The reason for this is not only the elimination of acid reflux by separating the stomach. Virtually all the symptoms of a reflux disorder disappear due to operative mobilization of the hernia followed by traction on the gastric pouch by the connected jejunal limb.

5.7 Quality of Life

The results of surgery in regard to improving the quality of life (QoL), brought about by weight reduction, are apparent in all QoL tests (Diagram 4). The results of the author’s prospective randomized study clearly demonstrate the improvement in the patient’s quality of life after bypass surgery.52–54

Diagram 4 illustrates the sustained improvement in quality of life after bypass surgery. Since the SF-12 index contains no commanding parameters related to weight loss and comorbidities, it is not possible to describe the outcome of surgery by this means. Bariatric surgery-specific indices reflect the positive effects of successful gastric bypass surgery more clearly.
5.8 Simultaneous Cholecystectomy?

To what extent simultaneous cholecystectomy should always be performed if a gall bladder is present was discussed controversially on many occasions in the past. After a gastric bypass it is no longer possible to conduct subsequent ERCP (Endoscopic Retrograde Cholangiopancreatography) in the normal manner for bile duct stones. Case reports have now become available where ERCP was performed with extra-long instruments or by means of gastrostomy with laparoscopic assistance. Based on our own experience we have increasingly dispensed with simultaneous cholecystectomy in cases where no stones have been detected. About 1/3 of all patients attend bypass surgery after cholecystectomy. If there are symptomatic gall stones, the aim should be to perform cholecystectomy. However, it extends the duration of surgery considerably because the trocars for the main intervention are introduced in the left upper abdomen working toward the hiatal region. If the abdominal wall is rich in fat, its use for cholecystectomy in the right upper abdomen is impaired considerably, or even rendered impossible. A concomitant steatosis makes the intervention more difficult in addition, resulting in a much higher complication risk, which is automatically reduced substantially by weight reduction after a second intervention. HAMAD et al. (2003) performed simultaneous cholecystectomy in 16% of their patients, thus extending the duration of surgery by a median of 49 min. and doubling the length of hospital stay. By administering Ursodiol® and ensuring an adequate supply of fluid the formation of gall stones can be reduced considerably by bringing about a weight reduction. VALLEGAS et al. (2004) detected gall stones in their patient group (n = 289) by means of intraoperative ultrasound in 14% of cases (n = 60) and removed the gall bladder at the same time. For a total of 80% of patients (n = 151) where the gall bladder was left alone systematic follow-up was conducted after 6 months. 22% of patients (n = 33) developed gall stones and 8% sludge (n = 12). Only 7% of patients (n = 11) manifested symptoms and underwent cholecystectomy.

Two of the patients developed acute cholecystitis and had to be subjected to laparoscopic cholecystectomy in an emergency operation. One patient developed acute cholangitis accompanied by septic shock, underwent open cholecystectomy in an emergency operation and was given a T-drain after open bile duct exploration. That patient’s life was at risk and it was only possible to dismiss him after one month. 106 patients (70%) were free of gall stones at the time of the ultrasound follow-up. This low incidence with strict ursodeoxycholic acid prophylaxis (600 mg/day) certainly justifies leaving the gall bladder alone during a gastric bypass. Discovered gall stones should, however, prompt surgeons to perform cholecystectomy as early as possible in order to avoid possible complications where therapy options are restricted.

6.0 Complications

The technical aspects of the laparoscopic gastric bypass (LGB, Laparoscopic Gastric Bypass) are a true challenge for any surgeon. Initial operating times of 8 hours and more are not rare, especially as far as the retrocolic approach is concerned, and not only pose problems for the surgeon but also increase the surgical risk for the patient. In the meantime, operating times and hospital stays have been reduced considerably after a learning curve. Series of studies from the US demonstrate how far “fast-track” surgery can also be enhanced in laparoscopic bariatric surgery. However, they still differ from European clinics (Tab. 4, p. 24). In the author’s own practice the mean operating time in antecolic technique has settled at less than 60 min. It was already shorter but it was extended again by systematic closure of mesenteric gaps. The length of hospital stay after the operation is 5 days on average so it is longer than in the US. The results of the laparoscopic gastric bypass procedure with respect to weight loss and improvement in quality of life are convincing as long as the operation is performed at centers with a sufficiently large population of patients. Wittgrove had already performed 1,500 operations by the year 2000. The operation figures at centers in the US jumped again between 2000 and 2003. At the figure of 140,000 gastric bypass operations it became the most frequent laparoscopic intervention in the US. The increase in the cost of surgical treatment for obesity has now prompted some insurance companies to put a stop to the unhindered rise. In the meantime, operation figures for LRYGB are also rising in Europe. Initial experiences with 625 LRNYGBs (525 primary, 88 secondary) in Germany was taken into consideration in this brochure. The surgeon’s personal learning curve is much longer than with gastric banding. The level of complexity is much higher, which is reflected in a conversion rate that is higher at the beginning. Our own “error curve” can only be minimized by adequate training and preparation within the scope of guest attendances at operations and exercises on animal models.

6.1 Hemorrhage

With this highly complex operation there are many different risks of hemorrhage. This applies not only to formation of the mesocolic slit, retrogastric preparation, and transection of the stomach and small intestine, but also to formation of the anastomosis. According to the literature, hemorrhage-related complication rates range between 0% and 13%. Hemorrhage from the staple line is a particularly common occurrence and requires suturing. Hemorrhage complications rarely lead to conversions though.
Sophisticated preparation technique in the obese environment, especially when opening the fat-rich mesocolon during a retrocolic gastric bypass with the ultrasonic dissector, is vital.

Hemorrhage from the staple line can be avoided almost completely by using bioabsorbable staple line reinforcement (e.g. Seamguard®, Gore). These materials are expensive though. If hemorrhage occurs at the staple line, it can be controlled well and does not represent a reason to convert. Hemorrhage from the mesocolon can be managed with an ultrasonic dissector. Hemorrhage from the staple line can be stopped by compression using atraumatic forceps, suturing or clip application.

6.2 Anastomotic Insufficiency

Creation of the gastrojejunal anastomosis is a very complex and difficult step in the operation. There is no reason to suspect that the causes of postoperative anastomotic insufficiency might be correlated with causal mechanisms different than those in open gastrojejunostomy. In many cases, these causes remain unclear.

Disturbed circulation (compression by use of a stapler, skeletonization of the small intestinal limb) seems to play a central role in this context.

Although there are a large variety of anastomotic insufficiencies (0 – 25%), the experience of the surgeon may be of particular significance. GAGNER et al. (1999 A) reported a rate of 5.7% after a total of 52 interventions. While 2 cases of leakage after “hand-sewn” anastomoses were observed within the first 8 interventions (25%), the third insufficiency was reported in the last 44 operations after a stapler anastomosis. In the largest patient group of WITTGROVE and CLARK (n = 300) only 9 cases of anastomosis leakage were reported (3%). Two of them had to be re-operated on with open surgery and 7 with laparoscopy. In 1999, the same authors reported only two cases of leakage after 200 procedures (1%), such that the total incidence of leakage was only 2.3% (500 procedures). WITTGROVE (2000 A) reports 4% early leakages, whereby 2 involved gastroenteroanastomosis and one enteroanastomosis.

Careful creation of the anastomosis and testing for leakage and adequate blood circulation are the main prophylactic measures for the prevention of anastomotic insufficiencies.

Insufficiency of the gastrointestinal anastomosis is a life-threatening event in all patients. However, this complication poses a particularly high risk to morbidly obese patients and is associated with a high rate of fatality.

Caution: Any sign of tachycardia (heart rate > 120 bpm) is sufficient reason to consider re-laparoscopy.

ALI et al. (2002) managed leakage secondary to LRYGB as follows:

- By re-laparoscopy 7 (50%)
- Successful closure 1 (7%)
- Persistent leakage 3 (21%)
- Conversion 3 (21%)
- By laparotomy as the initial treatment 3 (21%)

6.3 Wound Infection

The extremely thick abdominal walls represent a potential infection risk. This particularly applies to operations where the gastrointestinal tract has to be opened.

Intestinal pathogens find ideal growth conditions and thrive in the poorly vascularized fatty tissue. Pathogenic contamination occurs at the trocar ports, especially where miniature laparotomy (“hand-assisted” operations) are performed.

Wound infection rates of up to 25% have been reported (SCHWEITZER et al., 1999). GAGNER reported 3 infectious complications in 52 interventions (5.8%). One case, however, involved an infected intraabdominal hematoma. This patient had to undergo revision surgery. The other 2 cases were regular wound infections. SCHWEITZER et al. (1999) had to treat no less than 2 out of 8 patients (25%) suffering from wound infections. Working with the largest patient population (300 patients), WITTGROVE and CLARK reported only 15 minor (5%) and two major (0.7%) infections. The foremost concern in all procedures involving exposure of hollow organs is the prevention of infections at the site of the trocar port. Consequently, perioperative antibiotic prophylaxis is mandatory under these circumstances. The antibiotic dose must be adjusted to body weight and administered every 2 – 3 hours during long operations to keep the concentration of active agents at an adequately high level. It remains unclear whether postoperative administration of antiseptic agents to the trocar incisions is capable of preventing infection.

Amply sized incisions must be made and broad-range antibiotics administered under these circumstances. Because of the range of germs involved in necrotizing fasciitis, radical surgical debridement is required to prevent the pathogens from spreading.

6.4 Postoperative Hemorrhage

Hemorrhage usually results from the anastomosis, especially from the staple line. Apart from that there is a wide range of possible hemorrhage in this intervention. This especially applies to the slit made in the mesocolon, since the extreme accumulation of fat in this area can make the timely identification of vascular structures quite difficult. In the largest study, WITTGROVE and CLARK (1998 A) found only a 1.3% rate of relevant postoperative hemorrhage requiring revision. Only one revision call was performed for laparotomy, while 3 others were managed by a laparoscopic approach.
LÖNROTH (2000 A) reported a 7.9% rate of postoperative hemorrhage requiring transfusion. Postoperative hemorrhage can be prevented only by sophisticated surgical technique. It is mandatory that the operating field be closely inspected for any hemorrhage at the end of surgery. The indication for relaparoscopy or relaparotomy is based on the general principles of surgery. The decision should be taken without delay to spare the patient secondary complications, eliminate the need for transfusions and help prevent life-threatening situations.

6.5 Anastomotic Stenosis (Gastrojejunostomy)

Creation of the anastomosis under laparoscopic vision may pose technical difficulties, and the sutures placed under such conditions may leave behind an anastomosis that is too narrow.

Delayed stenosis is most often caused by local infection along the circular staple line. Stenoses after circular staple line anastomoses are always much more frequent than after hand-sewn anastomoses. Pouch size also has an influence on the development of ulcers and therefore on stenoses as well. Excessive pouch volume is associated with an increased ulcer risk. Since laparoscopic procedures do not involve miniature laparotomy, a patency test by digital palpation is not performed. It is usually not the case of anastomoses being primarily made too small but a case of secondary inflammatory shrinkage. Anastomotic stenosis rates ranging between 1% and 38% have been reported.

The principles guiding the correct placement of the anastomosis are no different from those applied in conventional and laparoscopic technique. By contrast, secondary bypass operations, i.e. after previous surgery such as Mason or gastric band migration, exhibit a higher stenosis rate than after primary interventions. In our own patient group we failed to see any stenoses after 585 primary LRNYGBs but after 88 secondary LRGYBs we observed 3 stenoses, which were dilated successfully in all cases.

Clinically relevant anastomotic stenoses can be treated by dilation with endoscopy. In some cases several sessions may be necessary.

6.6 Anastomotic Stenosis (Entero-Enteral Anastomosis)

Creation of the anastomosis under laparoscopic vision may pose technical difficulties, and the sutures placed under such conditions may leave behind an anastomosis that is too narrow.

Complete stenosis is hazardous because due to a lack of digestive juice discharge it can lead to early postoperative dilation of the remainder of the stomach (within 24 – 28 hours). This can trigger reflex cardiac arrest. Delayed stenosis is usually caused by local infection along the staple line. Since laparoscopic procedures do not involve miniature laparotomy, a patency test by digital palpation is not performed.

TAMOFF et al. (2002) report anastomotic stenosis at a rate of 0.4% (4/939). The majority of surgeons have had to contend with this complication and report on it in their personal communications.

The principles guiding the correct placement of the anastomosis are no different from those applied in conventional and laparoscopic technique.

As with gastrojejunostomy, creation of the anastomosis by laparoscopic suture technique is difficult here too, especially because the trocar positions were aligned after gastrojejunostomy.

Clinically relevant anastomotic stenosis must be treated by revision surgery. The problem can also be solved laparoscopically by creating an additional anastomosis between the biliodigestive and alimentary limbs.

6.7 Deep Vein Thrombosis

The rate of thromboembolic complications in surgery has dropped since perioperative thromboembolism prophylaxis has become standard. This is of special importance for laparoscopic surgery because of attendant circumstances that contribute to pathophysiological processes promoting deep vein thromboses in the legs and pelvis. These factors include: reduced venous reflux owing to compression of the caval vein, long duration of surgery, and, especially, extreme patient positioning. In the case of laparoscopic gastric bypass operations extreme patient positioning and long duration of surgery are combined.

Moreover, up to 40% of morbid obese patients have a history of deep vein thrombosis. The pulmonary embolism is still the most frequent non-surgical cause of death in bariatric surgery. With an incidence of up to 5% thromboembolisms (1/21 WESTLING 1999 A; 2/52 GAGNER et al., 1999 A) occur much more frequently than after other standard laparoscopic operations. The clearly higher rate of thromboembolic complications in LGB procedures, which is due to a combination of prolonged operating times and the extreme position patients are placed in, requires prophylactic measures to be taken.

Laparoscopic gastric bypass surgery is associated with the highest incidence of thrombosis. However, laparoscopy is not the only contributing factor.

SCOTT et al. (1992) report less than 0.01% thromboembolic complications after 12,000 laparoscopic procedures (1992). Despite a number of individual case reports, it is not yet conclusive whether these observations can be attributed to an increased rate of complications following laparoscopic surgery. Low dose heparinization has been the standard from the very beginning. Before the days of heparin prophylaxis, the rate of deep vein thrombosis of the leg following conventional cholecystectomy was 5%, a considerable rate (BERQUIST et al., 1990).
Limitation of the duration of gastric bypass operations is the critical factor in the prevention of postoperative thromboembolic complications. Early mobilization is another important prophylactic measure which has a very positive impact in the prevention of deep vein thrombosis of the leg. It may even compensate potential deficiencies. Intraabdominal pressure is an essential factor in determining the degree of venous reflux. Pressure values above 15 mmHg must be strictly avoided, since they may cause stasis in the area of the venous reflux. Venous stasis can promote the development of thrombosis and thromboembolism and is a particularly important pathogenic mechanism in patients with a history of previous vascular disease. Low dose heparinization is part of the standard protocol for all surgical procedures and reduces the risk of thromboembolic complications.

High-risk patients must be identified preoperatively and must receive physical treatment, such as intermittent pneumatic compression of the lower extremities. In severe high-risk cases, physical measures must be complemented by heparinization.

The therapeutic management of thromboses and thromboembolic complications follows generally accepted guidelines and does not differ from those commonly applied in minimally invasive surgical procedures. Heparinization in minimally invasive surgical procedures does not expose patients to the same high degree of risk found with major laparotomies or thoracotomies.

6.8 Anastomotic Ulcer

Only recently explored, the pathogenesis of ulcers has nullified many surgical therapy concepts. An improved understanding of the bacterial colonization of the stomach and duodenum and its impact on ulcer pathogenesis has led to a major revision of the indications for surgical management of this complication. Anastomotic ulcers have been reported at a rate of up to 10% (WESTLING, 1999 A). Preoperative records of the patient’s ulcer case history must be collected in detail (Helicobacter pylori, gastrin) to prevent formation of postoperative anastomotic ulcers.

As a matter of policy all patients should be subjected to gastroscopy prior to a gastric bypass operation. Analysis for Helicobacter pylori followed by eradication is obligate.

6.9 Internal Hernias and Small Intestine Environment

The eliminated Roux-en-Y limb may give rise to a number of potential complications. Most commonly, kinks and stenosis at the mesocolic opening lead to postoperative complications after a rectocolic bypass. Another common factor is the so-called Petersen hernia defect (Fig. 36) between the jejunal mesentery and the mesocolon. This herniation after an antecolic bypass was observed more and more frequently in recent years whenever Petersen’s space was not primarily closed with intraoperative non-absorbable suture.

Ileus rates of up to 38% after gastric bypass surgery have been reported in the literature. The large-scale analysis was presented by HIGA and BOONE (2003). Data from 2,000 patients who had undergone a gastric bypass operation from 1998 – 2001 was analyzed retrospectively. There were a total of 66 internal hernias, resulting in an incidence rate of 3.1%. The distribution of internal herniations was as follows: Mesocolon (44); jejunal mesentery (14); Petersen’s space (5). Virtually all the patients were symptomatic but 5% were discovered by chance during other interventions. 5 patients had to be subjected to laparotomy. 6 patients exhibited small intestinal perforation. One patient died as a result of complications after internal herniation. The negative exploration rate was 2% and in my view it is always justifiable.

The more frequent incidence of internal herniations after laparoscopic bypass surgery vs. open surgery is due to the reduced adhesion in the abdominal space. Mesenteric gap closure with non-absorbable suture has now become the standard procedure generally after antecolic LRYGBs as well. Not only do the mesenteric gaps between the biliodigestive and alimentary limbs have to be closed reliably, so too does Petersen’s space. For this purpose the mesocolon must be grasped with suture without harming the mesenteric vessels. Omentum fixation or an “omental seal” is not sufficient on its own because it shrinks in the course of weight reduction.

![Fig. 36](image-url) Herniation of a jejunal limb at the mesocolic opening created during retrocolic bypass surgery.
Accurate fixation of the jejunal limb in a mesocolic slit fashioned with an optimal anatomic fit is the best prophylaxis against this serious complication in the case of the retrocolic LRNYGB. Nevertheless, even after fixation such internal herniations can occur due to enormous fat loss. Ileus soon occurs and, if no treatment is given, intestinal gangrene.

Early symptoms are pains in the left upper abdomen and typical signs of ileus. In radiology, dilated jejunal limbs (with mirror imaging) in the left upper abdomen are signs. A CT or MRI scan is also more informative than an intestinal x-ray series with contrast medium, which often fails to produce a clear diagnosis due to the distal location of the disorder. From our experience early relaparoscopy is the best method of ruling out such complications and remedying them if the result turns out to be positive.

Clinical manifestation of mechanical ileus following a gastric bypass operation requires open revision surgery. Clinically, the complication may become apparent as unspecific abdominal spasm and vomiting, whereby in the case of obese patients this is firstly associated with "overeating". SCHWEITZER et al. (1999) successfully avoided intestinal infarction in 2 cases by performing early revision surgery.42

Conservative attempts at treatment are time-consuming and can waste valuable time. Intestinal infarction can only be prevented by taking a quick decision. SERRA et al. (1999) report a rare form of internal herniation of the small intestine through the mesocolic slit, which was manifested clinically by subsequent perforation of the overextended stomach.

6.10 Fistulas and Abscesses

Suture dehiscences, especially after the use of staplers, lead to the formation of fistulas. Abscesses are often found in association with anastomotic insufficiencies and are a late sequela. Infected hematomas are another frequent cause of postoperative abscesses.

Since only isolated case reports are available, it may be conjectured that the incidence of abscess formation following gastric bypass surgery is lower than 1%.39 However, the incidence may well be higher.

The decision on how to manage the patient – either by means of conservative or surgical treatment – depends on the manifest clinical symptoms.

Fistulas without septic complications can be managed with fibrin adhesive under endoscopic control. The important point is that they are not gastrogastric fistulas. With these there is a connection between the gastric pouch and the remainder of the stomach. They are usually due to incomplete transections of the stomach, necessitating repeat operative transection. Attempts using fibrin adhesives do not turn out to be successful.

6.11 Postoperative Incisional Hernia

The abdominal walls of extremely obese patients do not always allow individual layers of the abdominal wall to be exposed without extended incisions. There is an elevated rate of wound infections in the poorly vascularized fatty tissue, which constitutes another risk factor for postoperative herniation.

According to SUTER et al. (1999 A), the incidence of postoperative incisional hernias ranges between 0% and 13% in laparoscopically assisted procedures (miniature laparotomies). Most publications make no mention of hernias, which does not mean they did not occur. 13% incisional hernias related to hand-assisted procedures may be compared with the results obtained in primary "open" gastric bypass surgery. GAGNER et al. (1999 A) observed only 2 incisional hernias in their follow-up of 52 patients (3.9%).13

Accurate closure of the abdominal wall in obese patients is a difficult task and requires the surgeon to exercise a great deal of diligence. In particular, the abdominal walls of obese women are rich in fat, making it quite difficult to accomplish wound closure at the site of the trocar port with the commonly practiced method. The instrument for fascial closure used by BERCİ is very useful in this step of the procedure. Wound infections must be prevented, since they may induce formation of postoperative incisional hernias.

Clinical symptoms are critical in the decision when to initiate incisional hernia repair. The longer ago gastric bypass surgery was performed, the greater the degree of shrinking in subcutaneous fatty tissue, simplifying surgical management.

If the intestine is at imminent risk of getting entrapped in the hernia, the surgical procedure must be initiated at the earliest point in time to obviate the development of a potentially life-threatening situation.

After wound infection, one should wait as long as possible to prevent secondary wound-related infection.
6.12 Wernicke’s Syndrome

Chronic vomiting and large-scale cessation of the stomach’s function lead to vitamin B deficiency, which may in turn lead to the development of neurological disorders. There are various clinical manifestations. Rarity: GUSPI et al. (2000 A) described the case of a 23 year-old female patient who had a gastric bypass placed due to non-compliance following the removal of an adjustable gastric band. Due to recurrent vomiting over a period of weeks and termination of the gastric passage, the patient manifested vitamin B deficiency with ensuing neurological symptoms. These were reversible within 24 hours after parenteral administration of vitamin B. Recurrent vomiting is an indication for immediate intervention. Patients must be informed in detail about the symptoms and advised to present at the clinic without delay if they experience persistent vomiting.

All patients must be given sufficient parenteral vitamin supplements. Elimination of the cause of persistent vomiting and substitution of water, electrolytes, vitamins, and trace elements should be initiated immediately.

Caution: If neurological symptoms manifest after bariatric procedures with concomitant persistent vomiting, vitamin B deficiency must be taken into consideration. The diagnosis may be made ex juvantibus, i.e. based on the result of therapy.

In the described case of Wernicke’s syndrome with ophthalmopathological symptoms, parenteral vitamin B supplements must be administered in the ICU. In particular, adequate doses of vitamins B₁ and B₆ must be administered.

Emergency therapy: 100 mg thiamine per day (compound containing vitamin B₁ 100 mg, vitamin B₆ 100 mg, and vitamin B₁₂ 1000 mg) for 1–2 weeks. Depending on the preparation used, the parenteral administration may be given I.M. or I.V.

6.13 Iron Deficiency

Elimination of the principal iron absorption site (duodenum) often leads to iron deficiency. This is particularly the case with fertile women, who tend to lose blood regularly on account of menstruation. Oral iron substitution is ineffective so in many cases compensation can only be provided by iron infusions.

6.14 Hyperparathyroidism

Secondary hyperparathyroidism is more frequent in the case of morbid obesity (up to 8%). After gastric bypass surgery there are not as many disturbances of the calcium metabolism as after biliopancreatic diversions and duodenal switch surgery. Nevertheless, systematic follow-up is necessary and therapy may have to be provided by administering hormones and calcium.
References

Note: Abstracts of conference papers are indicated by the letter ‘A’ after the year (e.g., 1999 A).

Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity

Instrument Set for Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity

Telescopes, Operating Instruments and Accessories
Recommended Set for Laparoscopic Roux-en-Y Gastric-Bypass

Recommended Instrument Set, Units and Accessories

- **26003 BA**
 - 1 HOPKINS® Forward-Oblique Telescope 30°, enlarged view, diameter 10 mm, length 31 cm, autoclavable, fiber optic light transmission incorporated, color code: red

- **26003 AA**
 - 1 HOPKINS® Straight Forward Telescope 0°, diameter 10 mm, length 31 cm, autoclavable, fiber optic light transmission incorporated, color code: green, for use with TERNAMIAN EndoTIP Cannula 31103 MTR

- **495 NCS**
 - 1 Fiber Optic Light Cable, with straight connector, extremely heat-resistant, diameter 4.8 mm, length 250 cm

- **30103 CS**
 - 1 Telescope Stopper, sterile, disposable, package of 12 pieces, for use with telescope 26003 AAK and 26003 AA

- **30103 MTR**
 - 1 TERNAMIAN EndoTIP Cannula, with thread and rotatable insufflation stopcock, size 11 mm, working length 10.5 cm, color code: green

- **30108 MTR**
 - 6 TERNAMIAN EndoTIP Cannula, with thread and rotating stopcock, size 13.5 mm, working length 11.5 cm, color code: blue

- **30140 HB**
 - 1 Reduction Sleeve, reusable, instrument diameter 5 mm, trocar cannula outer diameter 13 mm, color code: black

- **30142 HB**
 - 6 Double Reducer, 13/10 mm, 13.5/10 mm, 13/5 mm and 13.5/5 mm

- **30623 URL**
 - 1 CUSCHIERI Retractor, large contact surface, size 10 mm, length 36 cm

- **28272 KKB**
 - 1 Holding System, autoclavable, with quick release coupling KSLOCK

- **30173 RAO**
 - 1 KOH Macro Needle Holder, dismantling, with Luer-Lock irrigation connector for cleaning, single action jaws, jaws curved to right, with tungsten carbide inserts, with ergonomic handle, axial, disengageable ratchet, ratchet position top, size 5 mm, length 33 cm,

- **30173 LAO**
 - 1 KOH Macro Needle Holder, dismantling, with Luer-Lock irrigation connector for cleaning, single action jaws, jaws curved to left, with tungsten carbide inserts, with ergonomic handle, axial, disengageable ratchet, ratchet position top, size 5 mm, length 33 cm,

- **33563 BLS**
 - 2 CLICKLINE BABCOCK Grasping Forceps, rotating, dismantling, without connector pin for unipolar coagulation, with irrigation connection for cleaning, double action jaws, rounded, long, size 10 mm, length 36 cm

- **33500 CM**
 - 1 CLICKLINE Metal Outer Sheath, with Luer-Lock connector for cleaning, size 10 mm, length 36 cm

- **33325 KW**
 - 1 CLICKLINE MATKOWITZ Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, Luer-Lock connector for cleaning, double action jaws, diameter 5 mm, length 36 cm

- **33300 CM**
 - 1 CLICKLINE Metal Outer Sheath, insulated, with cm-marking, with Luer-Lock connector for cleaning, size 5 mm, length 36 cm, for use with Forceps Insert 33310 KW

- **33333 ON**
 - 2 CLICKLINE Grasping Forceps, rotating, dismantling, without connector pin for unipolar coagulation, with Luer-Lock irrigation connector for cleaning, single action jaws, with especially fine atraumatic serration, fenestrated, size 5 mm, length 36 cm

- **33325 ML**
 - 1 CLICKLINE KELLY Dissecting and Grasping Forceps, rotating, dismantling, insulated, with connector pin for unipolar coagulation, Luer-Lock connector for cleaning, double action jaws, long, size 5 mm, length 36 cm

- **33361 AV**
 - 1 CLICKLINE Anvil Grasper, rotating, size 5 mm, length 36 cm, double action jaws

- **34351 MA**
 - 1 CLICKLINE Scissors, rotating, dismantling, with connector pin for unipolar coagulation, with Luer-Lock irrigation connector for cleaning, double action jaws, spoon-shaped blades, serrated, curved, length of jaws 20 mm, size 5 mm, length 36 cm, for use with trocars size 6 mm,

- **30775 UF**
 - 1 Coagulation and Dissection Electrode, L-shaped, size 5 mm, length 36 cm, with connector pin for unipolar coagulation

- **30775 UFE**
 - 1 Exchangeable Electrode Tip, L-shaped, autoclavable, package of 6

- **30444 LR**
 - 1 Clip Applicator, dismantling, rotating, size 10 mm, length 36 cm, for PILLING-WECK Titanium Clips 30460 AL (medium-large), with ratchet to lock the jaw holding the clip

- **30460 AL**
 - 1 PILLING-WECK Titanium Clip, medium-large, box with 16 sterile cartridges, 10 clips each, for use with Clip Applicator 30444 LR

- **37360 LH**
 - 1 Suction and Irrigation Tube, with lateral holes, size 5 mm, length 36 cm, for use with suction and irrigation handles

- **30805**
 - 1 Handle with Two-Way Stopcock, for suction and irrigation, autoclavable, for use with suction and irrigation tubes sizes 3 and 5 mm

- **26173 AM**
 - 1 BERCI Fascial Closure Instrument, for subcutaneous ligation of trocar incisions, size 2.8 mm, length 17 cm, for closure of trocar incision wounds

Please note: HOPKINS® Telescopes, Trocars, Forceps, Scissors and Needle Holders are also available in extended length versions.
HOPKINS® Laparoscopes Telescopes

Diameter 10 mm
Trocar, size 11 mm

Advantages of the HOPKINS® Laparoscopic Telescopes:
- Two and a half times greater image brightness
- Uniform image brightness, i.e. no loss in luminous intensity from the center to the margin of the image
- Reduced risk of object burns, i.e. the telescope requires a lower lamp output for the same perception of brightness
- Increased detail resolution

26003 BA

HOPKINS® Forward-Oblique Telescope 30°,
enlarged view, diameter 10 mm, length 31 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: red

or:

26003 FA

HOPKINS® Forward-Oblique Telescope 45°,
enlarged view, diameter 10 mm, length 31 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: black

Optional excess length HOPKINS® telescopes:

26003 BEA

HOPKINS® Forward-Oblique Telescope 30°,
enlarged view, diameter 10 mm, length 42 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: red

26003 FEA

HOPKINS® Forward-Oblique Telescope 45°,
enlarged view, diameter 10 mm, length 42 cm,
autoclavable,
fiber optic light transmission incorporated,
color code: black

26003 AE

ENDOCAMELEON® HOPKINS® Telescope,
diameter 10 mm, length 32 cm,
variable direction of view from 0° - 120°,
twisting controller to select the desired direction of view,
fiber optic light transmission incorporated,
color code: gold

It is recommended to check the suitability of the product for the intended procedure prior to use.
KARL STORZ TERNAMIAN EndoTIP System
for optically controlled access to the abdominal cavity

The TERNAMIAN EndoTIP System (Endoscopic Threaded Imaging Port) is a new KARL STORZ instrument for optically controlled access to the abdominal cavity. It replaces conventional trocars and, due to its unique design, offers a range of notable advantages for both surgeon and patient.

- The tissue is not cut through as it is when punctured with a conventional trocar, but is merely displaced. The integrity of the fasciae is preserved, and, therefore as well that of the fascial closure mechanism.
- The TERNAMIAN EndoTIP System contains neither sharp points nor a cutting trocar which eliminates the risk of unintentional injuries to the patient. Since the TERNAMIAN EndoTIP System is not pushed into the peritoneum by applying pressure, but is introduced by controlled rotation, injuries to organs caused by uncontrolled penetration of the abdominal wall are nearly impossible.
- In conjunction with a HOPKINS® Telescope, the surgeon has an excellent, enlarged image of the point of penetration and is, therefore, able to carefully monitor the penetration under optical control. The various tissue layers can be identified precisely.
- The special design of the TERNAMIAN EndoTIP System ensures a secure hold in the abdominal wall and prevents gas loss at the point of penetration.

The cannula is engaged in the anterior rectus fascial window and rotated clockwise.

HOPKINS® Straight Forward Telescope 0°, diameter 10 mm, length 31 cm, autoclavable, fiber optic light transmission incorporated, color code: green, for use with TERNAMIAN EndoTIP Cannula 31103 MTR

Telescope Stopper, sterile, disposable, package of 12 pieces, for use with telescope 26003 AAK and 26003 AA
TERNAMIAN EndoTIP Cannulas

size 11 mm and 13.5 mm

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30103 MTR</td>
<td>TERNAMIAN EndoTIP Cannula, with thread and rotatable insufflation stopcock, size 11 mm, working length 10.5 cm, color code: green, including: Cannula Multifunctional Valve</td>
</tr>
<tr>
<td>31103 MTR</td>
<td>Same, length 15 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30108 MTR</td>
<td>TERNAMIAN EndoTIP Cannula, with thread and rotating stopcock, size 13.5 mm, working length 11.5 cm, color code: blue, including: Cannula Multifunctional Valve</td>
</tr>
<tr>
<td>31108 MTR</td>
<td>Same, length 15 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30140 HB</td>
<td>Reduction Sleeve, reusable, instrument diameter 5 mm, trocar cannula outer diameter 13 mm, color code: black</td>
</tr>
<tr>
<td>30140 HE</td>
<td>Reduction Sleeve, reusable, instrument diameter 10 mm, trocar cannula outer diameter 13 mm, color code: black</td>
</tr>
<tr>
<td>30142 HB</td>
<td>Double Reducer, 13/10 mm, 13.5/10 mm, 13/5 mm and 13.5/5 mm</td>
</tr>
</tbody>
</table>
Dissecting and Grasping Forceps

CLICKLINE – rotational, can be dismantled, with and without connector pin for unipolar coagulation
size 5 mm, trocar size 6 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33151</td>
</tr>
<tr>
<td></td>
<td>33125</td>
</tr>
<tr>
<td></td>
<td>33153</td>
</tr>
<tr>
<td></td>
<td>33161</td>
</tr>
<tr>
<td></td>
<td>33163</td>
</tr>
<tr>
<td>36 cm</td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
</tr>
</tbody>
</table>

Double-action jaws:

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33310 KW</td>
<td>33351 KW 33325 KW 33353 KW 33361 KW 33363 KW</td>
</tr>
<tr>
<td>33410 KW</td>
<td>33451 KW 33425 KW 33453 KW 33461 KW 33463 KW</td>
</tr>
</tbody>
</table>

CLICKLINE MATKOWITZ* Grasping Forceps

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33310 ML</td>
<td>33351 ML 33325 ML 33353 ML 33361 ML 33363 ML</td>
</tr>
<tr>
<td>33410 ML</td>
<td>33451 ML 33425 ML 33453 ML 33461 ML 33463 ML</td>
</tr>
</tbody>
</table>

CLICKLINE KELLY Dissecting and Grasping Forceps, long

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33310 AF</td>
<td>33351 AF 33325 AF 33353 AF 33361 AF 33363 AF</td>
</tr>
<tr>
<td>33410 AF</td>
<td>33451 AF 33425 AF 33453 AF 33461 AF 33463 AF</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, atraumatic, fenestrated

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33310 ON</td>
<td>33351 ON 33325 ON 33353 ON 33361 ON 33363 ON</td>
</tr>
<tr>
<td>33410 ON</td>
<td>33451 ON 33425 ON 33453 ON 33461 ON 33463 ON</td>
</tr>
</tbody>
</table>

CLICKLINE Grasping Forceps, with especially fine atraumatic serration, fenestrated

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33310 ON</td>
<td>33351 ON 33325 ON 33353 ON 33361 ON 33363 ON</td>
</tr>
<tr>
<td>33410 ON</td>
<td>33451 ON 33425 ON 33453 ON 33461 ON 33463 ON</td>
</tr>
</tbody>
</table>

*) Outer tubes with a working length of 36 cm are also available with cm-markings. Outer tube 33300 CM needs to be specified separately in your order. Measurement of the length of the alimentary limb during Laparoscopic Roux-en-Y Gastric Bypass Surgery is considerably facilitated by cm-markings on the outer tube.

Please note:
For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with insulated handles with connector pin for unipolar coagulation, are shown against the red background, instruments with handles without connector pin for unipolar coagulation are shown against the blue background. The colour green indicates the inserts.
Scissors

CLICKLINE – rotational, can be dismantled, with and without connector pin for unipolar coagulation
size 5 mm, trocar size 6 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td>33151</td>
</tr>
<tr>
<td></td>
<td>NEW</td>
</tr>
<tr>
<td>43 cm</td>
<td>33125</td>
</tr>
<tr>
<td></td>
<td>NEW</td>
</tr>
</tbody>
</table>

Double-action jaws:

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>34310 MS</td>
<td>34351 MS 34325 MS 34361 MS</td>
</tr>
<tr>
<td>34410 MS</td>
<td>34451 MS 34425 MS 34461 MS</td>
</tr>
</tbody>
</table>

CLICKLINE METZENBAUM Scissors, curved, length of blades 12 mm

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>34310 MA</td>
<td>34351 MA 34325 MA 34361 MA</td>
</tr>
<tr>
<td>34410 MA</td>
<td>34451 MA 34425 MA 34461 MA</td>
</tr>
</tbody>
</table>

CLICKLINE Scissors, with serrated jaws, curved, spoon blades, length of blades 17 mm

Single-action jaw:

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>34310 EH</td>
<td>34351 EH 34325 EH 34361 EH</td>
</tr>
<tr>
<td>34410 EH</td>
<td>34451 EH 34425 EH 34461 EH</td>
</tr>
</tbody>
</table>

CLICKLINE Hook Scissors

Please note:
For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with insulated handles with connector pin for unipolar coagulation, are shown against the red background, instruments with handles without connector pin for unipolar coagulation are shown against the blue background. The colour green indicates the inserts.
Anvil Grasper
CLICKLINE – rotational, can be dismantled, with and without connector pin for unipolar coagulation
size 5 mm, trocar size 6 mm

Grasping of the anvil
Dissecting and Grasping Forceps

CLICKLINE – rotational, can be dismantled, size 10 mm, trocar size 11 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td>33161</td>
<td>33162</td>
<td>33163</td>
</tr>
</tbody>
</table>

Double-action jaws:

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>33510 BLS</td>
<td>33561 BLS</td>
</tr>
<tr>
<td>Clickline BABCOCK Grasping Forceps, rounded</td>
<td></td>
</tr>
<tr>
<td>33510 DU</td>
<td>33561 DU</td>
</tr>
<tr>
<td>Clickline DUVAL Grasping Forceps</td>
<td></td>
</tr>
<tr>
<td>33510 CB</td>
<td>33561 CB</td>
</tr>
<tr>
<td>Clickline Bowel Grasping Forceps</td>
<td></td>
</tr>
<tr>
<td>33510 MLL</td>
<td>33561 MLL</td>
</tr>
<tr>
<td>Clickline KELLY Dissecting and Grasping Forceps, long</td>
<td></td>
</tr>
</tbody>
</table>

*) Outer tubes with a working length of 36 cm are also available with cm-markings. Outer tube 33500 CM needs to be specified separately in your order. Measurement of the length of the alimentary limb during Laparoscopic Roux-en-Y Gastric Bypass Surgery is considerably facilitated by cm-markings on the outer tube.

Please note:

For CLICKLINE instruments only the individual component parts are numbered. The catalog number for the complete instrument is not on the instrument. Instruments with handles without connector pin for unipolar coagulation are shown against the blue background. The colour green indicates the inserts.
RoBi® Bipolar Grasping Forceps and Scissors

RoBi® – rotational, can be dismantle

with connector pin for **bipolar** coagulation, CLERMONT-FERRAND Model,
size 5 mm, trocar size 6 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td>38151</td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
</tr>
</tbody>
</table>

Double-action jaws:

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>38610 ON</td>
<td>38651 AN</td>
</tr>
<tr>
<td>38710 ON</td>
<td>38751 AN</td>
</tr>
</tbody>
</table>

RoBi® Grasping Forceps,

CLERMONT-FERRAND Model, fenestrated, with especially fine atraumatic serration

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>38610 MD</td>
<td>38651 MD</td>
</tr>
<tr>
<td>38710 MD</td>
<td>38751 MD</td>
</tr>
</tbody>
</table>

KELLY RoBi® Grasping Forceps,

CLERMONT-FERRAND Model, especially suitable for dissection

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>38610 MM</td>
<td>38651 MM</td>
</tr>
</tbody>
</table>

MANHES RoBi® Grasping Forceps,

CLERMONT-FERRAND Model, especially suitable tying intracorporeal knots

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Catalog number for the complete instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>38610 MW</td>
<td>38651 MW</td>
</tr>
<tr>
<td>38710 MW</td>
<td>38751 MW</td>
</tr>
</tbody>
</table>

METZENBAUM, RoBi® Scissors

CLERMONT-FERRAND Model, curved jaws, double-action jaws, thinner scissor blades,

Please note:

For RoBi® Bipolar Grasping Forceps instruments only the **individual component parts** are numbered. The catalog number for the **complete instrument**, as shown above against the **red background** is **not** on the instrument. The colour **green** indicates the **inserts**.
CUSCHIERI Retractor

size 10 mm
trocar size 11 mm

CUSCHIERI retractors 30623 UR and 30623 URL can be deflected by rotation of the proximal part of the handle. During Roux-en-Y Gastric Bypass Surgery the retractor is introduced through the 11 mm-port and placed below the right costal arch. Once securely attached to an instrument holder and firmly fixed in position, the retractor can be used to elevate the greater omentum. In this way, it is also possible to use the retractor for exposure of the hiatal region.

size 12 mm,
trocar size 13 mm

Fan Retractor, distending, with proximal rotating wheel for expansion,
size 12 mm, length 36 cm
Holding System
for fixation of a retractor

28272 KKB

Holding System, autoclavable, with quick release coupling KSLOCK, including:

- **Socket**, to clamp to the OR table, for European and US standard rails, also suitable for rails 25 x 10 up to 35 x 8 mm, with lateral clamp for height adjustment of the articulated stand
- **Articulated Stand**, reinforced version, L-shaped, with one central clamp for all five joint functions, height 48 cm, swivel range 52 cm, with quick release coupling KSLOCK (female)
- **Clamping Jaw**, metal, with axial uptake, for use with instrument, irrigation and telescope sheaths, clamping range 4.8 up to 12.5 mm, with quick release coupling KSLOCK (male)
Coagulating and Dissecting Electrodes
with Connector Pin for Unipolar Coagulation
size 5 mm
trocar size 6 mm

Special Features:
- Exchangeable electrode tip
- Ergonomic handling

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distal End</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30775 UF</td>
</tr>
<tr>
<td></td>
<td>30775 DU</td>
</tr>
</tbody>
</table>

30775 UFE Exchangeable Electrode Tip, L-shaped, package of 6, autoclavable
30775 DUE Exchangeable Electrode Tip, U-shaped, package of 6, autoclavable
Coagulating and Dissecting Electrodes with Channel
with Connector Pin for Unipolar Coagulation
size 5 mm
trocar size 6 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distal End</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>37370 DL</td>
<td>Coagulating and Dissecting Electrode, with suction channel, L-shaped</td>
</tr>
<tr>
<td>37470 DL</td>
<td></td>
</tr>
<tr>
<td>37370 DU</td>
<td>Coagulating and Dissecting Electrode, with suction channel, U-shaped</td>
</tr>
<tr>
<td>37470 DU</td>
<td></td>
</tr>
</tbody>
</table>

Handle with Trumpet Valve, for suction or irrigation, **autoclavable,** for use with 5 mm coagulating suction tubes and 5 mm suction and irrigation tubes

Irrigation and Suction Tubes
size 5 mm
trocar size 6 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 cm</td>
<td></td>
</tr>
<tr>
<td>43 cm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distal End</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>37360 LH</td>
<td>Suction and Irrigation Tube, with lateral holes</td>
</tr>
<tr>
<td>37460 LH</td>
<td></td>
</tr>
<tr>
<td>37360 SC</td>
<td>Suction and Irrigation Tube</td>
</tr>
<tr>
<td>37460 SC</td>
<td></td>
</tr>
</tbody>
</table>

Handle with Two-Way Stopcock, for suction and irrigation, **autoclavable,** for use with suction and irrigation tubes size 5 mm
KOH Macro Needle Holder, size 5 mm, dismantling, including:
- Handle
- Outer Sheath
- Working Insert

Cleaning and sterilization are gaining increasing importance for KARL STORZ as a manufacturer of surgical instruments. Similar to all our surgical instruments, the cleaning and hygiene of our needle holders also play an important role. Our KOH macro needle holders feature consistent effectiveness and precision, with significantly improved cleaning results achieved by dismantling the instrument. The handle, outer sheath and inner part can be cleaned and sterilized separately for perfect results.

This unique reusable three-piece design offers the user the following benefits:
- Can be disassembled into three separate components
- Fully autoclavable
- Cleaning adaptor
- Choice of six different handles and three different working inserts
- With tungsten carbide inserts
- Environmentally correct: In the event of damage, only the component with the defect needs to be replaced
- User-friendly and ergonomic handling
Handles and Outer Tubes

NEW

KOH Macro Needle Holders, dismantable

Handles axial and pistol grip with disengageable ratchet

<table>
<thead>
<tr>
<th>Handle Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 AR</td>
<td>Handle, axial, with disengageable ratchet, ratchet release on the right side</td>
</tr>
<tr>
<td>30173 AL</td>
<td>Handle, axial, with disengageable ratchet, ratchet release on the left side</td>
</tr>
<tr>
<td>30173 AO</td>
<td>Handle, axial, with disengageable ratchet, ratchet release on top</td>
</tr>
<tr>
<td>30173 PR</td>
<td>Handle, pistol grip, with disengageable ratchet, ratchet release on the right side</td>
</tr>
<tr>
<td>30173 PL</td>
<td>Handle, pistol grip, with disengageable ratchet, ratchet release on the left side</td>
</tr>
<tr>
<td>30173 PO</td>
<td>Handle, pistol grip, with disengageable ratchet, ratchet release on top</td>
</tr>
</tbody>
</table>

Metal Outer Sheath

Size 5 mm

- 30173 A with Luer-Lock connector for cleaning
- Length
 - 30173 A: 33 cm
 - 30178 A: 43 cm
Koh Macro Needle Holder

Dismantable

Size 5 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle 30173</th>
<th>Handle 30173</th>
<th>Handle 30173</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 cm</td>
<td>RAR</td>
<td>AL</td>
<td>AO</td>
</tr>
<tr>
<td>43 cm</td>
<td>RAR</td>
<td>AL</td>
<td>AO</td>
</tr>
</tbody>
</table>

Single-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 R</td>
<td>30173 RAR</td>
<td>30173 RAL</td>
</tr>
<tr>
<td>30178 R</td>
<td>30178 RAR</td>
<td>30178 RAL</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to right, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 L</td>
<td>30173 LAR</td>
<td>30173 LAL</td>
</tr>
<tr>
<td>30178 L</td>
<td>30178 LAR</td>
<td>30178 LAL</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to left, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 F</td>
<td>30173 FAR</td>
<td>30173 FAL</td>
</tr>
<tr>
<td>30178 F</td>
<td>30178 FAR</td>
<td>30178 FAL</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, straight jaws, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0
Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity

KOH Macro Needle Holder

NEW

dismantable

Size 5 mm

<table>
<thead>
<tr>
<th>Working Length</th>
<th>Handle</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 cm</td>
<td>30173 R PR</td>
</tr>
<tr>
<td>43 cm</td>
<td>30173 L PR</td>
</tr>
</tbody>
</table>

Single-action jaws

<table>
<thead>
<tr>
<th>Insert No.</th>
<th>Complete Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>30173 R</td>
<td>30173 RPR</td>
</tr>
<tr>
<td>30178 R</td>
<td>30178 RPR</td>
</tr>
<tr>
<td>30173 L</td>
<td>30173 LPR</td>
</tr>
<tr>
<td>30178 L</td>
<td>30178 LPR</td>
</tr>
</tbody>
</table>

KOH Macro Needle Holder, dismantling, jaws curved to right, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

KOH Macro Needle Holder, dismantling, jaws curved to left, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

KOH Macro Needle Holder, dismantling, straight jaws, with tungsten carbide inserts, for use with suture material size 0/0 – 7/0

54
Clip Applicator

size 10 mm
trocar size 11 mm

30444 LR Clip Applicator, dismantling, rotating, size 10 mm, length 36 cm, for PILLING-WECk Titanium Clips 30460 AL (medium-large), with ratchet to lock the jaw holding the clip, including:

Metal Handle, with ratchet
Metal Outer Sheath
Forceps Insert

30460 AL PILLING-WECk Titanium Clip, medium-large, box with 16 sterile cartridges, 10 clips each, for use with Clip Applicator 30444 LR

Please note:
The use of other clips than indicated above can lead to damage of the mouthpiece.

BERCI Fascial Closure Instrument
for subcutaneous ligature of trocar incisions

26173 AM BERCI Fascial Closure Instrument, for subcutaneous ligature of trocar incisions, size 2.8 mm, length 17 cm, for closure of trocar incision wounds
Mobile Equipment Cart

Monitor:
9627 NB 27" FULL HD Monitor

Camera System:
TC 200 DE IMAGE1 S CONNECT, connect module
TC 300 IMAGE1 S H3-LINK, link module
TH 100 IMAGE1 S H3-Z
Three-Chip FULL HD Camera Head

Light Source:
20133101-1 XENON 300 SCB Cold Light Fountain
495 NCSC Fiber Optic Light Cable

HF-Device:
20535201-125 AUTOCON® II 400
20017830 Two-Pedal Footswitch

Insufflation:
UI 400 S1 ENDOFLATOR® 40
UP 501 S3 S-PILOT™

Pump System:
26331101-1 HAMOU® ENDOMAT®

Equipment Cart:
UG 120 COR™ Equipment Cart, narrow, high
UG 500 Monitor Holder
UG 609 Bottle Holder, for CO2-Bottles
29005 DFH Foot-Pedal Holder,
for Two- and Three-Pedal Footswitches
UG 310 Isolation Transformer, 200V–240V
UG 410 Earth Leakage Monitor, 200V–240V

Additional for documentation purposes:
WD 250 AIDA® with SmartScreen®
TC 009 USB Adaptor, for ACC 1 and ACC 2
IMAGE1 S Camera System

Economical and future-proof
- Modular concept for flexible, rigid and 3D endoscopy as well as new technologies
- Forward and backward compatibility with video endoscopes and FULL HD camera heads

Innovative Design
- Dashboard: Complete overview with intuitive menu guidance
- Live menu: User-friendly and customizable
- Intelligent icons: Graphic representation changes when settings of connected devices or the entire system are adjusted

- Sustainable investment
- Compatible with all light sources

Automatic light source control
- Side-by-side view: Parallel display of standard image and the Visualization mode
- Multiple source control: IMAGE1 S allows the simultaneous display, processing and documentation of image information from two connected image sources, e.g., for hybrid operations

Dashboard

Live menu

Intelligent icons

Side-by-side view: Parallel display of standard image and Visualization mode
IMAGE1 S Camera System

Brilliant Imaging
- Clear and razor-sharp endoscopic images in Full HD
- Natural color rendition

Reflection is minimized
- Multiple IMAGE1 S technologies for homogeneous illumination, contrast enhancement and color shifting

FULL HD image

CLARA

FULL HD image

CHROMA

FULL HD image

SPECTRA A

FULL HD image

SPECTRA B

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.
IMAGE1 S Camera System

TC 200EN

IMAGE1 S CONNECT, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

- **Mains Cord**, length 300 cm
- **DVI-D Connecting Cable**, length 300 cm
- **SCB Connecting Cable**, length 100 cm
- **USB Flash Drive**, 32 GB, USB silicone keyboard, with touchpad, US

*Available in the following languages: DE, ES, FR, IT, PT, RU

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 200EN TC 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD video outputs</td>
<td>- 2x DVI-D</td>
</tr>
<tr>
<td></td>
<td>- 1x 3G-SDI</td>
</tr>
<tr>
<td>Format signal outputs</td>
<td>1920 x 1080p, 50/60 Hz</td>
</tr>
<tr>
<td>LINK video inputs</td>
<td>3x</td>
</tr>
<tr>
<td>USB interface</td>
<td>4x USB, (2x front, 2x rear)</td>
</tr>
<tr>
<td>SCB interface</td>
<td>2x 6-pin mini-DIN</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>2.1 kg</td>
</tr>
</tbody>
</table>

For use with IMAGE1 S

IMAGE1 S CONNECT Module TC 200EN

TC 300

IMAGE1 S H3-LINK, link module, for use with IMAGE1 FULL HD three-chip camera heads, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with **IMAGE1 S CONNECT TC 200EN** including:

- **Mains Cord**, length 300 cm
- **Link Cable**, length 20 cm

Specifications:

<table>
<thead>
<tr>
<th>Feature</th>
<th>TC 300 (H3-Link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported camera heads/video endoscopes</td>
<td>TH 100, TH 101, TH 102, TH 103, TH 104, TH 106 (fully compatible with IMAGE1 S)</td>
</tr>
<tr>
<td></td>
<td>222200-50-3, 222200-56-3, 222200-53-3, 222200-60-3, 222200-61-3, 222200-54-3, 222200-85-3 (compatible without IMAGE1 S technologies CLARA, CHROMA, SPECTRA*)</td>
</tr>
<tr>
<td>LINK video outputs</td>
<td>1x</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.86 kg</td>
</tr>
</tbody>
</table>

* **SPECTRA A**: Not for sale in the U.S.
** **SPECTRA B**: Not for sale in the U.S.
Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity

IMAGE1 S Camera Heads

For use with IMAGE1 S Camera System
IMEAGE1 S CONNECT Module TC 200EN, IMAGE1 S H3-LINK Module TC 300
and with all IMAGE1 HUB™ HD Camera Control Units

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>270 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, f = 15–31 mm (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

TH 100

IMAGE1 S H3-Z Three-Chip FULL HD Camera Head, 50/60 Hz, IMAGE1 S compatible, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length f = 15–31 mm (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, f = 15–31 mm (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

TH 104

IMAGE1 S H3-ZA Three-Chip FULL HD Camera Head, 50/60 Hz, IMAGE1 S compatible, **autoclavable**, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length f = 15–31 mm (2x), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 104</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x 1/3" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, f = 15–31 mm (2x)</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Monitors

9619 NB

19" HD Monitor,
color systems PAL/NTSC, max. screen resolution 1280 x 1024, image format 4:3,
power supply 100–240 VAC, 50/60 Hz,
wall-mounted with VESA 100 adaption,
including:
External 24 VDC Power Supply
Mains Cord

9826 NB

26" FULL HD Monitor,
wall-mounted with VESA 100 adaption,
color systems PAL/NTSC,
max. screen resolution 1920 x 1080,
image format 16:9,
power supply 100–240 VAC, 50/60 Hz
including:
External 24 VDC Power Supply
Mains Cord
Monitors

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th>Wall-mounted with VESA 100 adaption</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>9619 NB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9826 NB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inputs:

- DVI-D: ● ● ●
- Fibre Optic: - ● -
- 3G-SDI: - ● -
- RGBS (VGA): ● ● ●
- S-Video: ● ● ●
- Composite/FBAS: ● ● ●

Outputs:

- DVI-D: ● ● ●
- S-Video: ● ● ●
- Composite/FBAS: ● ● ●
- RGBS (VGA): ● ● ●
- 3G-SDI: - ● ●

Signal Format Display:

- 4:3: ● ● ●
- 5:4: ● ● ●
- 16:9: ● ●●
- Picture-in-Picture: ● ● ●
- PAL/NTSC compatible: ● ● ●

Optional accessories:

- 9826 SF: **Pedestal**, for monitor 9826 NB
- 9626 SF: **Pedestal**, for monitor 9619 NB

Specifications:

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop with pedestal</td>
<td>optional</td>
</tr>
<tr>
<td>Product no.</td>
<td>9619 NB</td>
</tr>
<tr>
<td>Brightness</td>
<td>200 cd/m² (typ)</td>
</tr>
<tr>
<td>Max. viewing angle</td>
<td>178° vertical</td>
</tr>
<tr>
<td>Pixel distance</td>
<td>0.29 mm</td>
</tr>
<tr>
<td>Reaction time</td>
<td>5 ms</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>700:1</td>
</tr>
<tr>
<td>Mount</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Weight</td>
<td>7.6 kg</td>
</tr>
<tr>
<td>Rated power</td>
<td>28 W</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0–40°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Rel. humidity</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>469.5 x 416 x 75.5 mm</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Certified to</td>
<td>EN 60601-1, protection class IPX0</td>
</tr>
</tbody>
</table>
Accessories for Video Documentation

For use with telescopes, size 10 mm:
495 NCS Fiber Optic Light Cable, with straight connector, extremely heat-resistant, diameter 4.8 mm, length 250 cm

For use with telescopes, size 5 mm:
495 NA Fiber Optic Light Cable, with straight connector, diameter 3.5 mm, length 230 cm

Cold Light Fountain XENON 300 SCB

20133101-1 Cold Light Fountain XENON 300 SCB with built-in antifog air-pump, and integrated KARL STORZ Communication Bus System SCB power supply: 100 – 125 V AC/220 – 240 V AC, 50/60 Hz including:
Mains Cord
SCB Connecting Cord, length 100 cm
20133027 Spare Lamp Module XENON with heat sink, 300 watt, 15 volt
20133028 XENON Spare Lamp, only, 300 watt, 15 volt
Data Management and Documentation
KARL STORZ AIDA® – Exceptional documentation

The name AIDA stands for the comprehensive implementation of all documentation requirements arising in surgical procedures: A tailored solution that flexibly adapts to the needs of every specialty and thereby allows for the greatest degree of customization.

This customization is achieved in accordance with existing clinical standards to guarantee a reliable and safe solution. Proven functionalities merge with the latest trends and developments in medicine to create a fully new documentation experience – AIDA.

AIDA seamlessly integrates into existing infrastructures and exchanges data with other systems using common standard interfaces.

WD 200-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, power supply 100-240 VAC, 50/60 Hz including:
USB Silicone Keyboard, with touchpad
ACC Connecting Cable
DVI Connecting Cable, length 200 cm
HDMI-DVI Cable, length 200 cm
Mains Cord, length 300 cm

WD 250-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, including SMARTSCREEN® (touch screen), power supply 100-240 VAC, 50/60 Hz including:
USB Silicone Keyboard, with touchpad
ACC Connecting Cable
DVI Connecting Cable, length 200 cm
HDMI-DVI Cable, length 200 cm
Mains Cord, length 300 cm

*XX Please indicate the relevant country code (DE, EN, ES, FR, IT, PT, RU) when placing your order.
Workflow-oriented use

Patient
Entering patient data has never been this easy. AIDA seamlessly integrates into the existing infrastructure such as HIS and PACS. Data can be entered manually or via a DICOM worklist. All important patient information is just a click away.

Checklist
Central administration and documentation of time-out. The checklist simplifies the documentation of all critical steps in accordance with clinical standards. All checklists can be adapted to individual needs for sustainably increasing patient safety.

Record
High-quality documentation, with still images and videos being recorded in FULL HD and 3D. The Dual Capture function allows for the parallel (synchronous or independent) recording of two sources. All recorded media can be marked for further processing with just one click.

Edit
With the Edit module, simple adjustments to recorded still images and videos can be very rapidly completed. Recordings can be quickly optimized and then directly placed in the report. In addition, freeze frames can be cut out of videos and edited and saved. Existing markings from the Record module can be used for quick selection.

Complete
Completing a procedure has never been easier. AIDA offers a large selection of storage locations. The data exported to each storage location can be defined. The Intelligent Export Manager (IEM) then carries out the export in the background. To prevent data loss, the system keeps the data until they have been successfully exported.

Reference
All important patient information is always available and easy to access. Completed procedures including all information, still images, videos, and the checklist report can be easily retrieved from the Reference module.
ENDOFLATOR® 40 with KARL STORZ SCB
with High Flow Insufflation (40 l/min.)

UI400S1

ENDOFLATOR® 40 SCB,
Set, with integrated SCB module,
power supply 100 - 240 VAC, 50/60 Hz
including:
ENDOFLATOR® 40
Mains Cord, length 300 cm
SCB Connecting Cable, length 100 cm
Universal Wrench
Insufflation Tubing Set, with gas filter, sterile,
for single use, package of 5*

Subject to the customer's application-specific requirements additional accessories must be ordered separately.

* This product is marketed by **mtp.**
For additional information, please apply to:

mtp medical technical promotion gmbh,
Take-Off Gewerbepark 46,
D-78579 Neuhausen ob Eck, Germany

HAMOU® ENDOMAT® with KARL STORZ SCB
Suction and Irrigation System

26331101-1

HAMOU® ENDOMAT® SCB,
power supply 100 – 240 VAC, 50/60 Hz
including:
Mains Cord
5x HYST Tubing Set*, for single use
5x LAP Tubing Set*, for single use
SCB Connecting Cable, length 100 cm
VACUsafe Promotion Pack Suction*, 2 l

Subject to the customer's application-specific requirements additional accessories must be ordered separately.

* This product is marketed by **mtp.**
For additional information, please apply to:

mtp medical technical promotion gmbh,
Take-Off Gewerbepark 46,
D-78579 Neuhausen ob Eck, Germany
with the compliments of
KARL STORZ — ENDOSKOPE