COMBINED ENDOSCOPIC THIRD VENTRICULOLOSTOMY AND CHOROID PLEXUS CAUTERIZATION (ETV/CPC)

For Infant Hydrocephalus with Special Emphasis on the Developing World

Benjamin C. WARF
COMBINED ENDOSCOPIC THIRD VENTRICULOSTOMY AND CHOROID PLEXUS CAUTERIZATION (ETV/CPC)
For Infant Hydrocephalus with Special Emphasis on the Developing World

2nd Edition

Benjamin C. WARF, M.D.

Hydrocephalus and Spina Bifida Chair
Director of Neonatal and Congenital Anomalies Neurosurgery
Boston Children’s Hospital

Associate Professor of Neurosurgery
Harvard Medical School

Senior Medical Director
CURE Hydrocephalus

Founding Medical Director
Director of Research
CURE Children’s Hospital of Uganda
Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)
For Infant Hydrocephalus with Special Emphasis on the Developing World

2nd Edition
Benjamin C. Warf, M.D.

Correspondence address of the author:
Benjamin C. Warf, M.D.
Boston Children’s Hospital
Harvard Medical School
CURE Children’s Hospital of Uganda
www.cure.org
www.cure.org/hydrocephalus

Important notes:
Medical knowledge is ever changing. As new research and clinical experience broaden our knowledge, changes in treatment and therapy may be required. The authors and editors of the material herein have consulted sources believed to be reliable in their efforts to provide information that is complete and in accord with the standards accepted at the time of publication. However, in view of the possibility of human error by the authors, editors, or publisher, or changes in medical knowledge, neither the authors, editors, publisher, nor any other party who has been involved in the preparation of this booklet, warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from use of such information. The information contained within this booklet is intended for use by doctors and other health care professionals. This material is not intended for use as a basis for treatment decisions, and is not a substitute for professional consultation and/or use of peer-reviewed medical literature.

Some of the product names, patents, and registered designs referred to in this booklet are in fact registered trademarks or proprietary names even though specific reference to this fact is not always made in the text. Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation by the publisher that it is in the public domain.

The use of this booklet as well as any implementation of the information contained within explicitly takes place at the reader’s own risk. No liability shall be accepted and no guarantee is given for the work neither from the publisher or the editor nor from the author or any other party who has been involved in the preparation of this work. This particularly applies to the content, the timeliness, the correctness, the completeness as well as to the quality. Printing errors and omissions cannot be completely excluded. The publisher as well as the author or other copyright holders of this work disclaim any liability, particularly for any damages arising out of or associated with the use of the medical procedures mentioned within this booklet.

Any legal claims or claims for damages are excluded.

In case any references are made in this booklet to any 3rd party publication(s) or links to any 3rd party websites are mentioned, it is made clear that neither the publisher nor the author or other copyright holders of this booklet endorse in any way the content of said publication(s) and/or web sites referred to or linked from this booklet and do not assume any form of liability for any factual inaccuracies or breaches of law which may occur therein. Thus, no liability shall be accepted for content within the 3rd party publication(s) or 3rd party websites and no guarantee is given for any other work or any other websites at all.

All rights reserved.
© 2015 Endo : Press® GmbH
P.O. Box, 78503 Tuttlingen, Germany
Phone: +49 (0) 74 61/1 45 90
Fax: +49 (0) 74 61/708-529
E-Mail: endopress@t-online.de

No part of this publication may be translated, reprinted or reproduced, transmitted in any form or by any means, electronic or mechanical, now known or hereafter invented, including photocopying and recording, or utilized in any information storage or retrieval system without the prior written permission of the copyright holder.

Editions in languages other than English and German are in preparation. For up-to-date information, please contact Endo : Press® GmbH at the address shown above.

Design and Composing:
Endo : Press® GmbH, Germany

Printing and Binding:
Straub Druck + Medien AG
Max-Planck-Straße 17, 78713 Schramberg, Germany

05.15-0.5

ISBN 978-3-89756-847-1
Contents

1 Introduction .. 6
 1.1 The Causes and Burden of Hydrocephalus in Developing Countries 6
 1.2 The Problem with Ventricular Shunts in a Developing Country 6
 1.3 The Problem with Ventricular Shunts in the Developed World 7
 1.4 The Advantages of Neuroendoscopic Management of Hydrocephalus 7

2 Anatomic Considerations 8
 2.1 Relevant Normal Ventriculoscopic Anatomy .. 8
 2.2 Anatomic Considerations in Post-Infectious Hydrocephalus (PIH) 10
 2.3 Anatomic Considerations in Post-Hemorrhagic Hydrocephalus (PHH) 11
 2.4 Anatomic Considerations in Non-Post-Infectious Hydrocephalus (NPIH) 12
 2.5 Anatomic Considerations in Hydrocephalus Associated with Myelomeningocele (MM) 13

3 ETV/CPC As the Primary Treatment for Hydrocephalus 15
 3.1 Treatment Outcomes for ETV/CPC at CURE Children’s Hospital of Uganda 15
 3.2 Treatment Outcomes for ETV/CPC at Boston Children’s Hospital 16
 3.3 How ETV and CPC Work .. 17
 3.4 Patient Selection for initial treatment and the role of redo ETV in managing failure 18

4 Endoscopic Third Ventriculostomy/Choroid Plexus Cauterization 20
 4.1 Equipment .. 20
 4.2 Operative Technique for ETV 21
 4.3 Operative Technique for CPC 26
 4.4 Reopening of obstructed ETV

5 Conclusion ... 31

6 References ... 31

CURE Hydrocephalus .. 33

Set for Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)
Steerable Neuro-Fiberscope and OI “HandyPro”
Neuro-Endoscope Operating Instruments and Accessories
Recommended Set acc. to Prof. WARF 35
1. Introduction

1.1 The Causes and Burden of Hydrocephalus in Developing Countries

Hydrocephalus in infants and children is an enormous burden in developing countries. In sub-Saharan Africa, we have estimated that each year 225,000–375,000 infants develop hydrocephalus in their first year of life. This is because hydrocephalus is largely a disease of poverty in such countries. We have previously reported that bacterial infection (ventriculitis) accounts for 60% of the cases of hydrocephalus in Uganda, and that most of these infections occur during the neonatal period in regular cycles between the rainy and dry seasons. The risk factors for this problem are unknown, but may include obstetrical complications (such as prolonged labor and premature rupture of membranes) and unclean perinatal practices. More than 60% of births in Uganda occur in the absence of any skilled attendant. Thus, more than half of the burden of hydrocephalus in the population is potentially preventable and based in the economic and political realities of the region.

1.2 The Problem with Ventricular Shunts in a Developing Country

Unlike the situation in developed countries, poverty and politics present barriers to the treatment of hydrocephalus in children. One problem is the lack of neurosurgical manpower. Another is the difficulty with transportation to a facility where care may be accessed. Most people do not own a vehicle, the funds for public transportation are often scarce, the roads in many areas are treacherous, and in some regions insecurity makes travel dangerous.

In a few hospitals, hydrocephalus is treated by general or pediatric surgeons with ventriculo-peritoneal shunt insertion; but, shunts are often too expensive for the family to purchase or are unavailable altogether. The latter problem would be alleviated if practitioners realized that expensive North American and European shunt products should not be the gold standard in this context, and that a very inexpensive shunt can give the same results, as we have previously demonstrated. But even when inexpensive shunts are available, shunt dependence itself is more dangerous under such circumstances. First, for the reasons already stated, it is difficult for a child to acquire urgent treatment in the case of a shunt malfunction or infection. Given that scenario, it is sobering to consider that half of children in North America can expect a shunt failure within 2 years of its insertion. Other common conditions such as severe macrocephaly from delayed treatment, malnutrition, and scalp sepsis incline toward skin erosion, shunt exposure, and infection (Figs. 1, 2). Thus, shunt dependence is even more life-threatening to children in this environment and should be avoided if possible.

1 Malnourished infant with macrocephaly, thin scalp, and prominent scalp veins.

2 Scalp sepsis and skin erosion with exposed shunt tubing.
1.3 The Problem with Ventricular Shunts in the Developed World

Shunt dependence exacts an enormous toll on the health care system in general and on patients and their families in particular. There is evidence that the North American shunt burden could be reduced by at least one-half if the endoscopic techniques presented here were broadly adopted as the primary treatment of infant hydrocephalus. The resulting health care cost savings for the US could ultimately be on the order of $1 billion annually. In addition, those who are successfully treated in this way forgo the concern for shunt malfunction with every headache or viral illness, the trips to the emergency room to “rule out shunt malfunction”, and – for many – the repeated shunt operations accumulated over a lifetime with the attendant risks and cost.

1.4 The Advantages of Neuroendoscopic Management of Hydrocephalus

In light of the foregoing, it is obvious that treating hydrocephalus definitively while avoiding shunt dependence would be safer, provided the operative mortality and morbidity were not significantly greater. The cost of purchasing the initial shunt (and subsequent shunt components in the event of infection or failure) can be avoided, as well as the life-long potential for mortality and morbidity from shunt failure and infection. We have demonstrated that endoscopic third ventriculostomy when combined with coagulation of the choroid plexus in the case of infants (ETV/CPC), has the potential for avoiding shunt dependence in the majority of children, with lower surgical mortality and morbidity. The main obstacles internationally to the implementation of this management strategy are:

- a lack of appreciation that shunt-dependence can be avoided in most children when ETV/CPC is implemented as the primary treatment; and
- a lack of training in the flexible ventriculoscopy techniques that are required.

The purpose of this monograph is to address these obstacles. Although there is no substitute for hands-on training, it is hoped that the information provided will present a challenge to the reigning standard of care for the treatment of hydrocephalus, especially in infants, and increase interest in the international neurosurgical community for acquiring these skills to the benefit of their patients. The observations reported here are based upon more than 5,000 ventriculoscopic procedures performed at the CURE Children’s Hospital of Uganda between June 2001 and July 2014 and our steadily growing experience in treating infant hydrocephalus by ETV/CPC in North America over the past 8 years.

Since 2001, KARL STORZ Company and the International Federation for Spina Bifida and Hydrocephalus have been important partners with CURE International in our work to bring optimal, evidence-based treatment for hydrocephalus to children everywhere.

From the outset it must be stated that a prospective randomized trial to compare the long-term benefit of neuroendoscopic versus shunt management of hydrocephalus in children has not yet been completed. It is an assumption (although, in my opinion, a reasonable one) that it is in the best interest of children to avoid life-long shunt dependence. It could be argued that the long-term risk of ETV/CPC failure is not yet clear. But late failure of a previously successful ETV appears to be rare and in experience with follow-up periods of more than 10 years, the great majority of failures occur within months of the operation. This contrasts with the persistent and repeated risk of shunt failure and infection over a lifetime. Furthermore there is currently equipoise in regard to the cognitive outcome in children treated with either shunt placement or ETV/CPC.

Although the ETV/CPC procedure was developed at CURE Children’s Hospital of Uganda, we now have extensive experience with its use in the United States since 2006, and have had the opportunity to help introduce it to several major pediatric neurosurgery centers in North America.

The International Program to Advance the Treatment of Hydrocephalus (iPATH) initiated over a decade ago has now evolved into CURE Hydrocephalus, a specialty program within CURE International that trains, equips, and provides ongoing support to low and middle income country neurosurgeons in comprehensive, evidence-based, and contextually-appropriate treatment of pediatric hydrocephalus.

It is my conviction that hydrocephalus could ultimately be successfully managed without shunt-dependence in the majority of the world’s children, and this monograph is intended as a stimulus toward that end, as well as an aid in the training of surgeons to perform these techniques.
2.1 Relevant Normal Ventriculoscopic Anatomy

My technique is to position the infant as for a right frontal shunt, such that the child is supine with the head turned to the left. Thus, proper orientation after inserting the endoscope into the right frontal horn will have the anterior direction located towards 9 o’clock on the video image, posterior towards 3 o’clock, right towards 12 o’clock, and left towards 6 o’clock. With this orientation in mind and the endoscope pointing toward the foramen of Monro (interventricular foramen), the septum is at 6 o’clock and the prominent thalamostriate vein is easily noted as it courses towards its junction with the septal vein at the posterior margin of the foramen of Monro (Fig. 3). The choroid plexus of the lateral ventricle courses posteriorly from the foramen of Monro along the curve of the thalamus into the temporal horn (Figs. 4a, b).

Advancing the scope through the foramen of Monro into the third ventricle, the following key landmarks are identified beginning from the anterior extreme and progressing posteriorly; the translucent lamina terminalis and optic chiasm (Fig. 5); the infundibular recess (or, as in this example – with flattening of the 3rd ventricular floor from hydrocephalus – the infundibulum, pituitary gland, and dorsum sellae can be clearly seen) (Figs. 6, 7); third ventricular floor overlying the interpeduncular cistern, mammillary bodies, and basilar apex often just visible through the translucent floor (Fig. 8); and the midbrain leading onto the ostium of the Sylvian aqueduct which is capped dorsally by the posterior (epithalamic) commissure, suprapineal recess, habenular commisure, and choroidal network, respectively (Figs. 9, 10). The third ventricle is bisected by the interthalamic adhesion (massa intermedia) (Fig. 9).
Note that the images for Figs. 4b and 10 were obtained with the flexible fiberoptic endoscope, whereas Figs. 3, 4a and 5–9 were obtained using a rigid HOPKINS® rod lens telescope (see section 4.1.) The images from the fiberoptic endoscope are not as crisp as those taken with a HOPKINS® rod lens telescope; but, only the flexible fiberoptic endoscope can be safely maneuvered for visualization of the 3rd ventricular roof and the anterior temporal horn and for achieving adequate access to the entire choroid plexus in both lateral ventricles through a single frontal approach (see section 4.3). I have not found the quality of the fiberoptic endoscope images to impede the performance of any procedure.

Familiarity with the anatomy of the interpeduncular and prepontine cisterns is also essential to performing the ETV properly. Upon penetrating the floor, the Liliequist membrane (LM) is often encountered as a separate barrier to entering the cisterns. This membrane is a complex of arachnoid sheets, and it is crucial to realize the presence of a horizontal component (the diencephalic leaf) and a vertical component (the mesencephalic leaf), as well as a pair of laterally positioned diencephalic-mesencephalic leaves.10 A medial ponto-mesencephalic membrane may also be noted inferiorly (Fig. 11). The insertion of the vertical component (mesencephalic leaf) of LM varies along the anterior-posterior axis, and penetration of the floor for the ETV occasionally leads into the space between the dura of the clivus and the mesencephalic leaf. The latter presents as a translucent or opaque membrane covering the basilar artery in the preopticine cistern, and its fenestration is necessary for entry into the cistern. Anteriorly, the clivus and dorsum sellae, the pituitary, and often the pituitary stalk are visualized (Fig. 12).

I have found that entry into the subdural space can often be avoided if one notes the subtle white line crossing the floor of the third ventricle from right to left just posterior to the dorsum sellae that marks the anterior-posterior position of the vertical component (mesencephalic leaf) of the LM as it makes its posterior deflection toward the mammillary bodies (Fig. 11, mesencephalic leaf of LM). Fenestrating the floor just posterior to this landmark, when it is visible, helps insure entry into the subarachnoid space of the prepontine cistern.
The basilar artery with its branches, and cranial nerves coursing toward the cavernous sinus are visible in the prepontine cistern (Fig. 13a). The third cranial nerves lie close to the posterior communicating arteries, running superficially just beneath and along the lateral boundaries of either side of the 3rd ventricular floor (Fig. 13b).

2.2 Anatomic Considerations in Post-Infectious Hydrocephalus (PIH)

The sequelae of ventriculitis, in addition to the resulting hydrocephalus, can cause severe anatomic distortion that on occasion obscures the anatomy severely enough to render the ETV procedure technically impossible. However, in most cases the anatomy is sufficiently preserved to perform the procedure. Depending upon the timing of the child’s presentation, the CSF may still be too opaque for adequate visualization through the endoscope. In such cases, I place a ventricular catheter and subcutaneous reservoir (ventricular access device) for serial drainage of CSF (usually over several days) until the fluid is sufficiently clear to proceed with ventriculoscopy. Common ventriculoscopic findings in postventriculitis hydrocephalus include: yellow inflammatory exudates (old pus), punctuate hemosiderin staining of the ependymal surfaces, and thickening of the 3rd ventricular floor (Figs. 14a–c).

Obstruction of the aqueduct by scar, pus, or hemosiderin was found in 2/3 of our PIH population (Figs. 15a, b). Intraventricular septations may cause multicompartment hydrocephalus that requires fenestration of the septations to allow free communication, even if the ETV is technically not feasible and a ventriculo-peritoneal shunt (VPS) is required (Figs. 16a, b).

After the ETV is performed the cistern may be found to be scarred. The management of this situation will be discussed below.
2.3 Anatomic Considerations in Post-hemorrhagic Hydrocephalus (PHH)

PHH, usually related to prematurity (PHHP) is rarely encountered in the setting of low-middle income countries (LMIC) because of the lack of intensive neonatal care required for the survival of severely premature infants. By contrast, this is one of the most common causes of infant hydrocephalus encountered in North American pediatric neurosurgical practice. Conversely, PIH is one of the most common etiologies of hydrocephalus in LMIC, but is not a major cause in North America. We have observed, though, that PHHP (a disease of prosperity) and PIH (a disease of poverty) are similar in their pathophysiology. Both can result in ependymal scar with intraventricular loculations and obstruction of the ventricular outlet foramina (e.g. the aqueduct of Sylvius, (Fig. 17), destruction of periventricular brain parenchyma, and arachnoid scarring in the posterior fossa or basal cisterns (Fig. 18).
2.4 Anatomic Considerations in Non-Post-Infectious Hydrocephalus (NPIH)

Although NPIH includes hydrocephalus secondary to an obstructing mass, such as a brain tumor, this etiologic category primarily refers to the various forms of congenital hydrocephalus, with the exclusion of that associated with Chiari II malformation/myelomeningocele (MM), which I consider separately. The varieties of abnormal anatomy that can be encountered are numerous, but a few are worth mentioning here. Congenital absence of the foramina of Monro is rare, but does occur. In this case, I have succeeded in entering the 3rd ventricle either through a thin membrane where it appears the foramen failed to form or directly through the columns of the fornix anterior to the venous angle. I have also encountered congenital fusion of the thalami with no access into a 3rd ventricle. Congenital aqueductal stenosis is common (Fig. 19) and, in the case of long-standing hydrocephalus, the floor of the 3rd ventricle may be severely depressed and even molded over the contours of the dorsum sellae and basilar artery. In cases where the aqueduct is open and the 4th ventricle is dilated on the preoperative imaging study, the brainstem and basilar artery are predictably displaced anteriorly, sometimes with the basilar artery touching the dura of the clivus. This also is typical of patients with the Dandy-Walker and Chiari II malformations (Fig. 20).

When this situation is anticipated great care must be taken when penetrating the 3rd ventricular floor, which can be done right at the dorsum sellae and just lateral to the basilar bifurcation in such cases.
2.5 Anatomic Considerations in Hydrocephalus Associated with Myelomeningocele (MM)

Performing the ETV/CPC in infants with hydrocephalus in association with myelomeningocele can be a particular challenge, but the results are rewarding. The intraventricular anatomy varies, but certain anomalies are especially common:

- absent septum pellucidum;
- fused, thickened fornical columns;
- robust choroid plexus with the glomus usually loosely tethered by a pedicle of thin vascular membrane;
- enlarged massa intermedia;
- interhypothalamic adhesions that complicate the terrain of the 3rd ventricular floor, which is often thick and non-translucent;
- aqueductal stenosis.

These are illustrated in Figs. 21–25. The intracisternal anatomy is often notable for:

- anteriorly displaced basilar artery and brainstem, often abutting the clival dura;
- downward displacement of the basilar apex which forms a “Y” shape;
- thick membrane of Liliequist that often requires separate fenestration after the floor is penetrated; and,
- cerebellar tissue visible in the lateral cisternal recesses near the occipital condyles (Figs. 26–28).
24 Third ventricular floor in 3 patients with Chiari II/MM showing interhypothalamic adhesions (fiberoptic endoscope).

25 Aqueductal stenosis in infants with Chiari II/MM (a–c): stenotic aqueduct with two ostia (a); acutely angulated aqueduct just distal to open ostium (b); very narrow aqueductal ostium (c) (fiberoptic endoscope).

26 Anteriorly and caudally displaced basilar artery in Chiari II/MM (fiberoptic endoscope).

27 View through ETV stoma of infant with Chiari II/MM showing fenestrated mesencephalic leaf of LM (fiberoptic endoscope).

28 Cerebellar tissue enveloping brainstem near foramen magnum in infant with Chiari II/MM (fiberoptic endoscope).
3.1 Treatment Outcomes for ETV/CPC at CURE Children’s Hospital of Uganda

In 2005 I reported the initial experience with attempting ETV alone as the primary treatment for infant hydrocephalus in Uganda. Similar to the experience reported by others in North America among patients younger than 1 year of age, only 40% of those with NPIH and MM and 45% of those with PIH (with an open aqueduct) were successful. An important exception was the group of infants less than 1 year of age with post-infectious obstruction of the aqueduct in whom ETV was successful in 70%. Thus, aside from this subgroup, ETV was successful in less than 50% of infants, and a better management solution was needed.

For reasons discussed below (in 3.3) a prospective study was undertaken in which CPC was added to the ETV procedure for all patients. The difference in outcome for ETV alone and the combination ETV/CPC procedure are summarized in Tables 1a, b.

We concluded from this study, that the addition of CPC to the ETV procedure was definitely beneficial for infants (< 1 year of age) with NPIH and MM and likely beneficial for infants with PIH. For all patients older than 1 year there were insufficient numbers to determine efficacy in those between 1 and 2 years of age, or other subcategories. Importantly, the ETV/CPC procedure proved safe in this initial series (< 1% operative mortality, morbidity, and infection rates).

Since 2005, using survival analysis methods, we have had the opportunity to report longer-term follow up data from CCHU in larger numbers of infants one year of age or younger with more specific etiologies of hydrocephalus. These include aqueductal stenosis (82% success), myelomeningocele (76% success), PIH (63% success), encephalocele (79% success), Dandy-Walker complex (69%), and congenital idiopathic communicating hydrocephalus (65% success). Figures 29 and 30 demonstrate the differences in treatment survival between ETV/CPC and ETV alone for aqueduct stenosis and for congenital idiopathic communicating hydrocephalus, respectively.

Factors affecting success of ETV/CPC at CCHU have also been analyzed in large numbers of children. Aside from very young age, the condition of the prepontine cistern in PIH (found at time of ETV) and the extent of CPC were found to predominate.

<table>
<thead>
<tr>
<th>Differences in Outcome by Age</th>
<th>< 1 year</th>
<th>≥ 1 year</th>
<th>All ages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETV only (success/total)</td>
<td>98/209 (47%)</td>
<td>47/59 (80%)</td>
<td>145/268 (54%)</td>
</tr>
<tr>
<td>ETV/CPC (success/total)</td>
<td>141/214 (66%)</td>
<td>33/41 (80%)</td>
<td>174/255 (68%)</td>
</tr>
<tr>
<td>P</td>
<td>< 0.0001</td>
<td>1.0000</td>
<td>0.0012</td>
</tr>
</tbody>
</table>

Tab. 1a

<table>
<thead>
<tr>
<th>Differences in Outcome by Etiology for Patients of Less Than 1 Year of Age</th>
<th>< 1 year of age</th>
<th>PIH</th>
<th>NPIH</th>
<th>MM</th>
<th>PHH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETV only (success/total)</td>
<td>70/134 (52%)</td>
<td>21/55 (38%)</td>
<td>7/20 (35%)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>ETV/CPC (success/total)</td>
<td>72/117 (62%)</td>
<td>32/46 (70%)</td>
<td>34/45 (76%)</td>
<td>2/5 (40%)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>< 0.1607</td>
<td>0.0025</td>
<td>0.0045</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1b

29 Treatment results for aqueduct stenosis.
30 Treatment results for idiopathic communicating hydrocephalus.
3.2 Treatment Outcomes for ETV/CPC at Boston Children’s Hospital

In 2014 we reported results for treatment of infant hydrocephalus by ETV/CPC in a North American population at Boston Children’s Hospital. Of 100 consecutive infants presenting for treatment of hydrocephalus, 91 (98%) were treated with ETV/CPC at mean and median ages of 4.7 and 3.2 months. Post-hemorrhagic hydrocephalus, myelomeningocele, and congenital aqueduct stenosis each comprised about 25%. Infants routinely had preoperative sagittal FIESTA MRI imaging of the brain to assess the status of the prepontine cistern. Infants with PHH and evidence of cisternal obstruction were excluded from ETV/CPC based upon our previously reported experience in this population. Kaplan-Meier analysis estimated overall 6 and 12-month success at 65% and 57% (Fig. 31), exceeding that predicted by the ETV success score. Predictors of failure (using Cox proportional hazards model) were infectious etiology (post-meningitis, Fig. 32), age less than 6 months (Fig. 33), cisternal scarring noted at the time of ETV, and prior CSF diversion. Six-month success for those without these risk factors was 67% for infants younger than 6 months and 79% for those older than 6 months (Fig. 34). There were no deaths, infections, or neurologic morbidity. The few post-infectious hydrocephalus cases encountered in this series were those following meningitis, in contrast to the PIH that predominates in Uganda, which is post-ventriculitis. We concluded that ETV/CPC may be a safer and more durable primary treatment than shunting for the majority of infants.
3.3 How ETV and CPC Work

In 2005 I reported that ETV combined with CPC was more effective than ETV alone for treating infant hydrocephalus. But understanding the mechanism for this is evolving. The endoscopic third ventriculostomy (or ventriculocisternostomy) provides direct communication between the 3rd ventricle and the subarachnoid spaces by way of the interpeduncular and pre-pontine cisterns. Traditional explanations for the affect of ETV assume the simplistic model that CSF is produced by choroid plexus in the ventricles and flows in bulk out the 4th ventricle foramina and into the subarachnoid spaces where it is absorbed at a rate that balances that of production. If that were the case, ETV could be understood as bypassing an obstruction at some point between the 3rd ventricle and the subarachnoid spaces (e.g. aqueduct stenosis or a posterior fossa obstruction).

ETV should be expected to function if there is no obstruction to flow from the interpeduncular/prepontine cisterns to and through the arachnoid granulations in the superior sagittal sinus and if the intravenous (superior sagittal sinus) pressure is normal. ETV would not be expected to be a sufficient treatment if extraventricular CSF circulation and absorption deficiencies were the primary cause (as assumed for post-meningitis, post-subarachnoid hemorrhage, and idiopathic communicating hydrocephalus). Similar reasoning suggests that ETV might fail in very young infants with congenital forms of hydrocephalus (such as that associated with myelomeningocele or aqueduct stenosis) if the CSF circulation and absorption mechanisms have not had sufficient opportunity to develop. In this traditional model, CPC could be understood as decreasing the rate of CSF production and in this way overcoming a relative deficiency in absorption among young infants. My original decision to add CPC to ETV was based upon these assumptions.

But this “bulk flow” paradigm seems – at least – incomplete, given evidence for water exchange across the ependymal surfaces and the association of hydrocephalus with elevated intraventricular pulsation amplitudes that are involved in driving progressive ventriculomegaly.

Hydrocephalus may result, at least in part, from pathologic distribution of intracranial cardiac pulsations. This may arise from post-inflammatory subarachnoid space scarring, ventricular outlet obstruction, or decreased venous compliance, each of which can increase the amplitude of intraventricular pulsations. I have previously suggested that ETV may function to augment intraventricular pulsation absorption and CPC may enhance this affect by direct reduction of the intraventricular pulsations generated by the choroid plexus. I have further suggested that, given evidence the infant brain has a relatively high compliance that diminishes with age (until senescence, when it increases again), ETV may be less successful in the early months of life because the ventricles are more easily expanded rendering pulsation absorption by ETV less likely to be sufficient to halt progressive ventriculomegaly. I have proposed that the addition of CPC in these infants makes ETV success more likely because of the additional reduction in intraventricular pulsation amplitude (Fig. 35).

With increasing age beyond infancy, ETV becomes more effective, and is so effective in the case of aqueduct stenosis that the addition of CPC for patients older than 2 years of age does not seem indicated. The use of ETV/CPC in older children and adults with other forms of hydrocephalus (including idiopathic normal pressure hydrocephalus, or iNPH) has not received sufficient study.
3.4 Patient Selection for Initial Treatment and the Role of Redo ETV in Managing Failure

We have found that the addition of CPC helps “level the playing field” for ETV outcome in regard to age, etiology of hydrocephalus, and whether the aqueduct is open or closed. Although age is still a factor, the most important determinants of success are the degree of choroid plexus cauterization and the status of the prepontine cistern.25, 26

Obstruction of the prepontine cistern by scar can occur with either PIH or PHH. When this can be detected by MRI, using sagittal FIESTA imaging, we have found it to be a contraindication to ETV, and recommend placement of a VP shunt.13, 30

In LMIC where MRI is not available, we recommend proceeding to placement of a VP shunt if – upon performing the ETV – it is discovered that the prepontine cistern is obstructed by arachnoid scar. In this case, the likelihood of failure is so high, it seems advisable to proceed with shunt placement under the same anesthesia, and thus patients undergoing ETV/CPC in this setting are routinely positioned, prepped, and draped for a right frontal VP shunt placement in case this becomes indicated.

Infants with PIH (or PHH) may have grossly distorted anatomy that technically precludes the procedure. If preoperative imaging (ultrasound, CT, or MRI) demonstrates this to be the case, then placement of a VP shunt may be indicated from the beginning.

However, even when ETV is not technically possible, multiloculated hydrocephalus may dictate the need for endoscopic fenestration of septations and possible fenestration of the septum pellucidum in order to create free communication within the ventricular system at the time of shunt placement.

It is important to note that, aside from the situations noted above (cisternal obstruction and gross anatomic distortion), all infants with hydrocephalus are eligible candidates for ETV/CPC regardless of etiology. (Although, as noted above, we have had poor initial success with hydrocephalus resulting from neonatal meningitis).

We have demonstrated that shunt survival is not negatively affected by prior ETV (+/-CPC) or by shunting at the time of an abandoned ETV attempt.35 We have also investigated the role of redo ETV in patients failing initial treatment because of subsequent ETV obstruction.11 Those with a longer time to failure of initial ETV (> 6m 91%, 3–6m 60%, <3m 42%, p<0.01 Log-Rank), post-infectious etiology (PIH 58% vs. NPIH 42%, p=0.02, Log-Rank, Wilcoxon) and prior CPC (p=0.03) had significantly better outcome (p values ≤0.02, Cox regression).

The algorithms below illustrate our current evidence-based recommendation for treatment of infant hydrocephalus in our CURE Hydrocephalus program and at Boston Children’s Hospital, respectively. Figures 36 and 37 illustrate the algorithms for initial treatment and for management of ETV/CPC failure, respectively, in the CURE Hydrocephalus program. Figure 38 illustrates the current overall management paradigm at Boston Children’s Hospital.
CURE Hydrocephalus Treatment Protocol

- **New infant with HC**
 - HC at birth?
 - US OK? CSF clear?
 - ETV/CPC
 - Cistern scarred
 - Shunt
 - US OK?
 - Shunt
 - CSF clear?
 - Reservoir*
 - Other cause of HC? (e.g. MM, DWM, EC)
 - <3 months old and task-sharing?
 - Reservoir
 - Febrile illness <3m prior to HC?
 - ETV/CPC
 - Cistern scarred
 - Shunt

CURE Hydrocephalus Treatment Failure Protocol

- Failed ETV/CPC
 - Cistern scarred?
 - Shunt
 - TTF <3m?
 - PIH?
 - Endoscopy to assess ETV ETV obstructed?
 - Shunt
 - Reopen ETV Good ETV into unscarred space?
 - Follow Repeat failure?

Boston Children’s Hospital Protocol

- New infant with HC
 - Monitor
 - Gestational age > 35 weeks?
 - VSGS*
 - CSF clear?
 - ETV/CPC
 - VPS
 - Success?
 - TTF <3m or second failure?
 - Monitor
 - Repeat ventriculocopy
 - Reopen ETV
 - ETV obstructed?
 - HC = hydrocephalus; IVH = intraventricular hemorrhage; VSGS = ventriculo-subgaleal shunt; *HC may resolve in some cases; VPS = ventriculo peritoneal shunt.

36 = No = Yes

US OK = anatomy not severely distorted/ETV technically possible; MM = myelomeningocele; DWM = Dandy-Walker Malformation; EC = encephalocele; Task-sharing = some must be assigned to other providers for shunts due to high volume; *HC may resolve in some cases.

37 = No = Yes

Cistern scarred = noted at original ETV; TTF = time to failure from original ETV.
4.1 Equipment
The equipment used for the procedure includes the flexible neuroendoscope 11282 BN1*, IMAGE1 S H3-Z Camera Head, IMAGE1 S CONNECT and IMAGE1 S X-LINK, Cold lightsource XENON 300 SCB, Bugby electrocautery wire and 27” Full HD monitor (Figs. 39a–c).

* KARL STORZ, Tuttlingen, Germany

Flexible-steerable neuroendoscope, (KARL STORZ, Tuttlingen, Germany) (a). Video cart showing setup, (KARL STORZ, Tuttlingen, Germany) (b). Bugby electrocautery wire, (KARL STORZ, Tuttlingen, Germany) (c).
In older children for whom an ETV alone is going to be performed, I have used the OI Handi-Pro® rigid pediatric neuroendoscope with 0° HOPKINS® rod lens telescope (Fig. 40). However, I prefer the flexible endoscope even in these cases because it affords the ability to make more subtle and controlled movements of the tip as well as much greater maneuverability.

Performing CPC in both lateral ventricles, including the plexus within the temporal horns, from a single frontal approach cannot be achieved with a rigid endoscope.

Furthermore, for the management of multi-compartment PIH, I find the flexible endoscope invaluable. The fiberscope filter setting options for the camera aid in enhancing the image quality.* The ventriculoscopic photographs in this publication were obtained using the KARL STORZ AIDA image capture system.

* The development of a digital, "chip on the tip" flexible neuroendoscope should eliminate any previous concerns about image quality compared to that of rigid, rod lens endoscopes.

4.2 Operative Technique for ETV

The details of scope and camera sterilization, operative setup, and the ventriculoscopy procedure in the setting of a developing country have been reported. Since we have had to avoid the use of consumable items given cost constraints, none are used in this procedure. The endoscope and camera are both sterilized and placed directly on the operative field with the camera and light cables exiting the field toward the video cart (accommodating the monitor, video box, light source, and image capture system) at the foot of the bed. We currently use a KARL STORZ autoclavable camera, and the flexible endoscope is sterilized in Cidex® and rinsed thoroughly with sterile water immediately prior to use.
After the setup and white balancing of the endoscope and video system, a gently curved 90° angle incision is made in the lateral corner of the anterior fontanel with the flap centered in the mid-pupillary line (Fig. 41). (In older children, the scalp flap and a burr hole are centered immediately anterior to the coronal suture in the mid-pupillary line.) The small scalp flap is reflected to expose the dura of the fontanel and is tacked back with a suture (Fig. 42). The dura is incised sharply, allowing for its primary closure to avoid CSF leak (Fig. 43). (In older patients, when operating through a burr hole, it is usually not feasible to close the dura; so, the endoscope tract through the cortex is plugged with a rolled piece of Surgicel® or dry Gelfoam and the burr hole is filled with the bone shavings and sealed with bone wax.) After opening the dura, the pia and cortical surface are coagulated, then penetrated with the obturator of a peel-away sheath or a ventricular cannula (Figs. 44a, b). (A disposable peel-away sheath is helpful, but I have found them to be a non-essential expense. If a small amount of tissue obstructs the endoscope during its insertion, this is easily cleared away with a gentle flush through the irrigation port.) The endoscope is then inserted and the camera orientation is adjusted appropriately such that anterior is at 9 o’clock and posterior at 3 o’clock on the video image. Fig. 45a demonstrates the setup with the bulk of the endoscope resting on the field and the surgeon’s right hand resting on the patient’s head while the tip of the scope is inserted and subsequently manipulated.
I currently use a scope holder (KARL STORZ) that clamps to the operating table and suspends the endoscope above the field to facilitate its stability and manipulation (Figs. 45b–d). I control the endoscope with my right hand, which I stabilize by resting my 4th and 5th fingers lightly on the patients head, and manipulate the scope between my right thumb and index finger (for depth, gross angulation, and torque). I control the steering mechanism with my left hand (to flex the tip in either of two directions while simultaneously twisting the scope with my right thumb and forefinger to point the tip in any direction through 360°). The depth of the Bugby wire is also controlled with the left hand.

The flexible neuroendoscope has one working channel with two access ports – each with a stopcock. I do not use continuous irrigation, but rather intermittent manual irrigation with a 10cc syringe as needed. If irrigation is required while the Bugby wire is occupying the working channel via port A, the syringe can be connected to port B and irrigation performed after the stopcock on port A is clamped down on the wire to prevent egress of the irrigant. The OI Handi-Pro® rigid neuroendoscope has a channel for irrigation that is conveniently separate from the working channel. This renders closure of the working channel port during irrigation unnecessary.

The floor (Fig. 46) is fenestrated with the Bugby wire just behind the dorsum sellae using brief pulses of electrocautery, if necessary, to weaken, but not penetrate, the surface (Figs. 47a–c) This is followed by blunt penetration through the floor (Fig. 47d).
The wire is used to gradually dilate the opening to at least 5–7 mm by gentle stretching of the ETV stoma in different directions (Fig. 48).

With the steerable tip of the flexible endoscope, the stoma dilation is easily done by flexing the tip with the left hand while torquing the scope in different directions with the right thumb and forefinger. This requires virtually no gross transit movements of the proximal portion of the scope. (However, the images for Figs. 46–49 were taken using the OI Handi-Pro® rigid endoscope with the 0° Hopkins rod lens telescope).

The scope is passed through the opening in the floor and, when necessary, additional membranes (e.g. Liliequist’s membrane or arachnoid adhesions resulting from prior inflammation) are penetrated until the scope can be passed freely into the interpeduncular and pre-pontine cisternal spaces with visualization of a “naked” basilar artery (Fig. 49). If entry is made anterior to the vertical portion (mesencephalic leaf) of Liliequist’s membrane, which obscures the basilar artery, blunt dissection is accomplished with the tip of the wire to fenestrate the membrane (Fig. 50). I find that the flexible endoscope allows dissection within the cisterns to be accomplished delicately and safely. I do not recommend such maneuvers with a rigid endoscope because the required movements are too gross.

For patients with PIH, if the cisterns are found to have arachnoid adhesions from prior meningitis, a similar technique of blunt dissection can be undertaken to open up the cisterns; but, I have found the failure rate of ETV (+/-CPC) in PIH to be unacceptable when the cisterns are scarred significantly (Figs. 51a–c), and I place a VP shunt when this is found to be the case.13
The goal of this intra-cisternal dissection is the direct visualization of a “naked” BA, its branches, and the cranial nerves. The scope is withdrawn from the ventriculostomy, and evidence for flow across the stoma is noted. In cases where the child presents with infected, turbid, or bloody CSF that precludes initial ventriculoscopy, a reservoir is placed for serial tapping until the fluid has sufficiently cleared to allow endoscopy to be performed.

I have previously described the procedure of ETV through the lamina terminalis (LT) if an ETV in the floor is not technically feasible (usually secondary to scar from prior ventriculitis), although this is not the preferred site, and the creation of an LT-ETV as a second opening in addition to the floor ETV was not found to confer any benefit15. The technique is similar to that for the floor, with partial thickness cauterization of the LT followed by penetration with the Bugby wire and subsequent stretching of the stoma (Figs. 52a–c).

The flexible endoscope often needs to be rotated between the right thumb and index finger while simultaneously flexing the tip with the steering mechanism in order to achieve a more perpendicular angle of attack for the Bugby wire upon the LT.
Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)

Special mention should be made of performing the ETV in MM patients, and this is demonstrated in Figs. 53a–f. The variations in ventriculoscopic anatomy among these patients have been described above. The typically enlarged massa intermedia only rarely precludes access to the floor, which is almost always thickened with no evidence of the basilar artery (BA) position below. Inter-hypothalamic adhesions are common, but are usually preserved as the floor is approached around them en passant. The floor is gently and bluntly penetrated using the Bugby wire (but without the use of electrocautery) posterior to the infundibular recess and anterior to the mammillary bodies, taking advantage – if possible – of a small segment of the floor that is often thinned out.

There is commonly a prominent inter-hypothalamic adhesion crossing the floor in this vicinity. As the floor is gradually penetrated, the dorsum sellae, pituitary, and brainstem come into view. The flexible fiberoptic neuroendoscope is then gently threaded over the wire into the interpeduncular and prepontine cisternal spaces (after fenestration of Liliequist's membrane if needed), which are typically very crowded from anterior displacement of the brainstem and BA complex. In addition, the top of the BA is usually displaced caudally with its bifurcation forming a “Y”. As in other cases, blunt dissection of arachnoid adhesions using the tip of the Bugby wire and the tip flexion control of the flexible endoscope is sometimes required to open up the cistern.

4.3 Operative Technique for CPC

Following the ETV, attention is turned to the CPC as demonstrated in Figs. 54. Beginning at the foramen of Monro and gradually moving posteriorly, the CP of the lateral ventricle is thoroughly cauterized using the Bugby wire and low-voltage monopolar coagulating current (Figs. 54a–c). In cases of severe ventriculomegaly, a portion of the CP in the anterior roof of the third ventricle is often available for cauterization as well. Care is taken to avoid injury to the thalamostriate and internal cerebral veins or ependymal surfaces. Special attention is paid to the complete coagulation of all vessels within the plexus, including the superior choroidal vein along its entire length (Figs. 54c, d).

At the level of the atrium the glomus portion of the CP is thoroughly cauterized (Figs. 54e–k).
Sequential photographs demonstrating CPC in right lateral ventricle from the foramen of Monro to the atrium (refer to text) (HOPKINS® rod lens telescope).
Then, passing the scope posterior to the thalamus, its tip is flexed and turned to direct the procedure along the CP of the temporal horn, which is then cauterized in similar fashion beginning from its anterior extreme and advancing the wire posteriorly along its length (Figs. 55a, b). Cautery is continued until all visible CP has been coagulated and shriveled. For cases in which the septum pellucidum is intact, a septostomy is performed superior to the posterior edge of the Foramen of Monro to gain access to the contralateral CP, where the same procedure is carried out in the left lateral ventricle (Figs. 56a–c). Uncommonly, bleeding (usually venous) may be encountered from the CP. In such cases, I have found it most efficiently controlled by tamponading it with the Bugby wire while gently irrigating for a couple of minutes until it stops. The bilateral CPC typically adds from 20 to 30 minutes to the procedure.
Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)

Cauterization of the vascular pedicle tethering a pendulous glomus of the right lateral ventricle choroid plexus which has dropped into the left lateral ventricle (Chiari II/MM patient) (fiberoptic endoscope).

If the CP is partially scarred from prior inflammation, all residual CP is cauterized. In some PIH cases, the CP is sufficiently effaced by scar that no cauterization is possible. In the MM patients, there is typically redundant, robust CP loosely tethered by a thin vascular sheet-like membrane in addition to a carpet of CP adherent to the ependymal surface along the curve of the thalamus. With the patient’s head turned to the left, the right glomus choroideum often drops across the midline, dangling into the left lateral ventricle by this elongated vascular pedicle, which I thoroughly cauterize in addition to the glomus (Figs. 57a–c).

4.4 Reopening of Obstructed ETV

As noted above, we have established the indications and outcomes for reopening of a closed ETV stoma in cases of ETV failure.11 If the ventriculocisternostomy is no longer patent, free communication between the 3rd ventricle and cisterns is re-established (Figs. 58a–j). Stoma obstruction can occur from simple healing (“virginal floor”), the formation of a membrane over an identifiable stoma, or scar within interpeduncular or prepontine cisterns. In the latter case, dissection through the arachnoid scar and into unaffected, open, cistern must be achieved. If this is unsafe or not feasible, a new ETV through the lamina terminalis, as described above, can be considered. If the ETV is found to be patent at the time of repeat endoscopy with good communication into the cisterns, then a VP shunt is placed.
Blunt dissection with Bugby wire to reopen the sealed ETV in a patient with Chiari II/MM and re-establish free communication between the 3rd ventricle and the prepontine cistern (HOPKINS® lens).
Conclusion

Where the equipment and skills for providing ETV/CPC as the primary treatment for infant hydrocephalus are accessible, the shunt burden could eventually be reduced by at least one-half. This is most obviously desirable in those low and middle-income countries where shunt-dependent patients face difficult barriers to accessing urgent care for shunt malfunction. However, the potential long-term benefits to patients and healthcare systems everywhere seems evident. It is clear that our reported results for ETV/CPC are dependent upon the ability to cauterize the majority of the plexus in both lateral ventricles, including that in the temporal horns, and to manipulate the endoscope within the prepontine cistern to achieve an adequate ventriculocisternostomy even when the landscape is not straightforward. It is also clear that the ETV/CPC technique as described here cannot be properly or safely performed without using the flexible endoscope. There is currently no known benefit of endoscopic treatment compared to shunt-dependence in regard to cognitive outcomes, and appropriate randomized prospective studies need to be performed to determine this. There are also no known adverse long-term consequences of cauterizing the lateral ventricle choroid plexus. There are, however, very well established risks to shunt-dependence (including failures, infections, and the consequences of over-drainage) and in the developing world these risks are magnified significantly. CURE Hydrocephalus is committed to increasing access to optimal evidence-based treatment for the children of the world with hydrocephalus by training and equipping developing world neurosurgeons to perform ETV/CPC (as well as shunt placements and revisions). It is my hope that this monograph will prove helpful in this process, as well as in that of introducing the technique to pediatric neurosurgeons everywhere.

References

2. CURE INTERNATIONAL: http://www.cureinternational.org/uganda, CURE HYDROCEPHALUS: www.curehydrocephalus.org, 701 Bosler Avenue, Lemoyne, PA 17043, USA
5. INTERNATIONAL FEDERATION FOR SPINA BIFIDA AND HYDROCEPHALUS: Cellebroersstraat 16, B-1000, Brussels, Belgium, www.ifglobal.org
37. WARF BC. The impact of combined endoscopic third ventriculostomy and choroid plexus cauterization on the management of pediatric hydrocephalus in developing countries. World Neurosurgery 79 (2) Supplement, Pages S23.e13–S23.e15, 2013
CURE Hydrocephalus

The *International Program to Advance the Treatment of Hydrocephalus* (iPATH) was organized as a cooperative effort of CURE International, the International Federation for Spina Bifida and Hydrocephalus, and the KARL STORZ Company. The program has now evolved into a key specialty program within CURE International, called CURE Hydrocephalus (CH).

The program trains and equips neurosurgeons responsible for treating hydrocephalus in low- and middle-income countries. In that practice context, shunt-dependence carries more risk for children with hydrocephalus because of the high probability of shunt malfunctions over time that require emergency treatment.

Unlike more developed countries where the existing economy, infrastructure, and health care system can readily support the emergency maintenance required for patients who are shunt-dependent, the lives of these patients in less developed countries are threatened because of the lack of prompt access to neurosurgical care.

Experience in Uganda suggests that, in the setting of an emerging country, at least half of all children with hydrocephalus can be adequately treated using endoscopic methods. In young infants, our experience was similar to that of others, in that ETV alone was not effective in avoiding shunt dependency for the majority. But we demonstrated that choroid plexus cauterization in combination with endoscopic third ventriculostomy (ETV/CPC) was extremely effective. The ETV/CPC technique requires the use of a flexible fiberoptic endoscope in order to access the choroid plexus throughout both lateral ventricles.
The CURE Children’s Hospital in Mbale, Uganda, provides the high volume of patients necessary to master these techniques in a relatively short time. Because of this, a number of developed world neurosurgeons already experienced in performing ETV have come to CCHU in order to be trained in the ETV/CPC technique, including the pediatric neurosurgeons of the North American Hydrocephalus Clinical Research Network (HCRN) who have begun a multi-site prospective trial of ETV/CPC in North America.

In 2 months of hands-on training at CURE Children’s Hospital of Uganda, a CH Fellow can expect to perform 50 to 100 ETV/CPC procedures. The program is directed by Dr. Benjamin Warf, who developed the technique. CURE Hydrocephalus provides the fellows’ training and partners with his home institution in the development of a hydrocephalus treatment program. The goal of CH is to facilitate access to optimal evidence-based treatment of hydrocephalus for children around the world through training, collaboration, research, and quality assurance.

For more information go to: www.cure.org/hydrocephalus
Set for Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)

Steerable Neuro-Fiberscope and OI “HandyPro®” Neuro-Endoscope
Operating Instruments and Accessories

Recommended Set acc. to Prof. WARF
Neuro-Fiberscope

Diameter 3.7 mm, working length 34 cm, steerable

11282 BN **Neuro-Fiberscope, steerable**, working channel inner diameter 1.5 mm, deflection 180°/100°, direction of view 0°, angle of view 110°, working length 34 cm, total length 64 cm, distal tip outer diameter 3.7 mm

including:
- **Pressure Compensation Cap**
- **Leakage Tester**
- **Cleaning Brush**

11161 AB **Coagulating Electrode**, unipolar, flexible, diameter 1 mm, length 73 cm

11161 KA **Biopsy Forceps**, flexible, double action jaws, diameter 1 mm, length 60 cm

11161 KB **Grasping Forceps**, flexible, double action jaws, diameter 1 mm, working length 100 cm

11161 MA **Biopsy Forceps**, flexible, double action jaws, diameter 1 mm, working length 100 cm

11161 MB **Grasping Forceps**, flexible, double action jaws, diameter 1 mm, working length 100 cm

26002 M **Unipolar High Frequency Cord**, with 4 mm plug for models KARL STORZ, Erbe type T, older models and Ellman, length 300 cm
It is recommended to check the suitability of the product for the intended procedure prior to use.
OI "HandyPro®" Neuro-Endoscope
Operating instruments, size 1.3 mm – semirigid

Recommended Set acc. to OI

28161 SC **Scissors**, single action jaws,
diameter 1.3 mm, length 30 cm

28161 SB **Biopsy Forceps**, double action jaws,
diameter 1.3 mm, length 30 cm

28161 SG **Grasping Forceps**, double action jaws,
diameter 1.3 mm, length 30 cm

28161 SE **Coagulating Electrode**, unipolar,
diameter 1.3 mm, length 30 cm

28161 SF **Coagulating Electrode**, bipolar,
diameter 1.3 mm, length 30 cm

28162 GB **Balloon Catheter**, diameter 1 mm,
length 40 cm, sterile, for single use,
package of 10
Plastic Containers for Sterilizing and Storage of Telescopes

Plastic Container for Sterilizing and Storage of Telescopes, perforated, with transparent lid, with silicone telescope holder, external dimensions (w x d x h): 446 x 90 x 45 mm, for 4 mm Cystoscopy Telescopes or 10 mm Laparoscopy Telescopes and similar including:

Bottom Part

Lid

Silicone Telescope Holder

Silicone Telescope Holder

Plastic Containers for Sterilizing and Storage of Variable Instrument Sets

The plastic containers may be used for sterilization with steam, gas and plasma.

Plastic Container for Sterilizing and Storage of Variable Instrument Sets, perforated, with transparent lid, with silicone mat, two-level storage, 1 additional insert), external dimensions (w x d x h): 545 x 260 x 115 mm including:

2x **Snap-in Clip**, package of 12

2x **Silicone Tie-Downs**, package of 12

Tool

Please note: The instruments displayed are not included in the plastic containers.
Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)

IMAGE1 S Camera System

Economical and future-proof
- Modular concept for flexible, rigid and 3D endoscopy as well as new technologies
- Forward and backward compatibility with video endoscopes and FULL HD camera heads

Innovative Design
- Dashboard: Complete overview with intuitive menu guidance
- Live menu: User-friendly and customizable
- Intelligent icons: Graphic representation changes when settings of connected devices or the entire system are adjusted

Automatic light source control
- Side-by-side view: Parallel display of standard image and the Visualization mode
- Multiple source control: IMAGE1 S allows the simultaneous display, processing and documentation of image information from two connected image sources, e.g., for hybrid operations

Dashboard

Live menu

Intelligent icons

Side-by-side view: Parallel display of standard image and Visualization mode
Brilliant Imaging
- Clear and razor-sharp endoscopic images in FULL HD
- Natural color rendition

- Reflection is minimized
- Multiple IMAGE1 S technologies for homogeneous illumination, contrast enhancement and color shifting

FULL HD image

CLARA

FULL HD image

CHROMA

FULL HD image

SPECTRA A*

FULL HD image

SPECTRA B**

* SPECTRA A: Not for sale in the U.S.
** SPECTRA B: Not for sale in the U.S.
Combined Endoscopic Third Ventriculostomy and Choroid Plexus Cauterization (ETV/CPC)

IMAGE1 S Camera System

TC 200EN

TC 200EN* **IMAGE1 S CONNECT**, connect module, for use with up to 3 link modules, resolution 1920 x 1080 pixels, with integrated KARL STORZ-SCB and digital Image Processing Module, power supply 100–120 VAC/200–240 VAC, 50/60 Hz including:

- **Mains Cord**, length 300 cm
- **DVI-D Connecting Cable**, length 300 cm
- **SCB Connecting Cable**, length 100 cm
- **USB Flash Drive**, 32 GB, USB silicone keyboard, with touchpad, US

*Available in the following languages: DE, ES, FR, IT, PT, RU

Specifications:

<table>
<thead>
<tr>
<th>HD video outputs</th>
<th>Format signal outputs</th>
<th>LINK video inputs</th>
<th>USB interface</th>
<th>SCB interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 2x DVI-D</td>
<td>1920 x 1080p. 50/60 Hz</td>
<td>3x</td>
<td>4x USB</td>
<td>2x 6-pin mini-DIN</td>
</tr>
<tr>
<td>- 1x 3G-SDI</td>
<td></td>
<td></td>
<td>(2x front, 2x rear)</td>
<td></td>
</tr>
</tbody>
</table>

Power supply

<table>
<thead>
<tr>
<th>Power supply</th>
<th>100–120 VAC/200–240 VAC</th>
</tr>
</thead>
</table>

Power frequency

| 50/60 Hz |

Protection class

| I, CF-Defib |

Dimensions w x h x d

| 305 x 54 x 320 mm |

Weight

| 2.1 kg |

For use with IMAGE1 S

IMAGE1 S CONNECT Module TC 200EN

TC 300

TC 300 **IMAGE1 S H3-LINK**, link module, for use with IMAGE1 FULL HD three-chip camera heads, power supply 100–120 VAC/200–240 VAC, 50/60 Hz, for use with **IMAGE1 S CONNECT TC 200EN** including:

- **Mains Cord**, length 300 cm
- **Link Cable**, length 20 cm

Specifications:

<table>
<thead>
<tr>
<th>Camera System</th>
<th>TC 300 (H3-Link)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported camera heads/video endoscopes</td>
<td>TH 100, TH 101, TH 102, TH 103, TH 104, TH 106 (fully compatible with IMAGE1 S) 22220056-3, 22220056-3, 22220053-3, 22220060-3, 22220061-3, 22220054-3, 22220065-3 (compatible without IMAGE1 S technologies CLARA, CHROMA, SPECTRA*)</td>
</tr>
<tr>
<td>LINK video outputs</td>
<td>1x</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–120 VAC/200–240 VAC</td>
</tr>
<tr>
<td>Power frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Protection class</td>
<td>I, CF-Defib</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>305 x 54 x 320 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>1.86 kg</td>
</tr>
</tbody>
</table>

* **SPECTRA A**: Not for sale in the U.S.
** **SPECTRA B**: Not for sale in the U.S.
IMAGE1 S Camera Heads

NEW

For use with IMAGE1 S Camera System

IMAGE1 S CONNECT Module TC 200EN, IMAGE1 S H3-LINK Module TC 300

and with all IMAGE1 HUB™ HD Camera Control Units

TH 100

IMAGE1 S H3-Z Three-Chip FULL HD Camera Head,

50/60 Hz, IMAGE1 S compatible, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length \(f = 15–31 \text{ mm (2x)} \), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 100</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x ⅓" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 114 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>270 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, (f = 15–31 \text{ mm (2x)})</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>

TH 104

IMAGE1 S H3-ZA Three-Chip FULL HD Camera Head,

50/60 Hz, IMAGE1 S compatible, autoclavable, progressive scan, soakable, gas- and plasma-sterilizable, with integrated Parfocal Zoom Lens, focal length \(f = 15–31 \text{ mm (2x)} \), 2 freely programmable camera head buttons, for use with IMAGE1 S and IMAGE1 HUB™ HD/HD

Specifications:

<table>
<thead>
<tr>
<th>IMAGE1 FULL HD Camera Heads</th>
<th>IMAGE1 S H3-ZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>TH 104</td>
</tr>
<tr>
<td>Image sensor</td>
<td>3x ⅓" CCD chip</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>39 x 49 x 100 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>299 g</td>
</tr>
<tr>
<td>Optical interface</td>
<td>integrated Parfocal Zoom Lens, (f = 15–31 \text{ mm (2x)})</td>
</tr>
<tr>
<td>Min. sensitivity</td>
<td>F 1.4/1.17 Lux</td>
</tr>
<tr>
<td>Grip mechanism</td>
<td>standard eyepiece adaptor</td>
</tr>
<tr>
<td>Cable</td>
<td>non-detachable</td>
</tr>
<tr>
<td>Cable length</td>
<td>300 cm</td>
</tr>
</tbody>
</table>
Monitors

9619 NB

19" HD Monitor,
color systems PAL/NTSC, max. screen resolution 1280 x 1024, image format 4:3,
power supply 100–240 VAC, 50/60 Hz,
wall-mounted with VESA 100 adaption,
including:
External 24 VDC Power Supply
Mains Cord

9826 NB

26" FULL HD Monitor,
wall-mounted with VESA 100 adaption,
color systems PAL/NTSC,
max. screen resolution 1920 x 1080,
image format 16:9,
power supply 100–240 VAC, 50/60 Hz
including:
External 24 VDC Power Supply
Mains Cord
Monitors

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th>Wall-mounted with VESA 100 adaption</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
</tbody>
</table>

Inputs:

<table>
<thead>
<tr>
<th></th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fibre Optic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3G-SDI</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Outputs:

<table>
<thead>
<tr>
<th></th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI-D</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>S-Video</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite/FBAS</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>RGBS (VGA)</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>3G-SDI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal Format Display:

- 4:3: ● ● ●
- 5:4: ● ● ●
- 16:9: ● ● ●
- Picture-in-Picture: ● ● ●
- PAL/NTSC compatible: ● ● ●

Optional accessories:

- 9826 SF **Pedestal**, for monitor 9826 NB
- 9626 SF **Pedestal**, for monitor 9619 NB

Specifications:

KARL STORZ HD and FULL HD Monitors

<table>
<thead>
<tr>
<th>Desktop with pedestal</th>
<th>19"</th>
<th>26"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product no.</td>
<td>9619 NB</td>
<td>9826 NB</td>
</tr>
<tr>
<td>Brightness</td>
<td>200 cd/m² (typ)</td>
<td>500 cd/m² (typ)</td>
</tr>
<tr>
<td>Max. viewing angle</td>
<td>178° vertical</td>
<td>178° vertical</td>
</tr>
<tr>
<td>Pixel distance</td>
<td>0.29 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Reaction time</td>
<td>5 ms</td>
<td>8 ms</td>
</tr>
<tr>
<td>Contrast ratio</td>
<td>7:1</td>
<td>14:1</td>
</tr>
<tr>
<td>Mount</td>
<td>100 mm VESA</td>
<td>100 mm VESA</td>
</tr>
<tr>
<td>Weight</td>
<td>7.6 kg</td>
<td>7.7 kg</td>
</tr>
<tr>
<td>Rated power</td>
<td>28 W</td>
<td>72 W</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>0–40°C</td>
<td>5–35°C</td>
</tr>
<tr>
<td>Storage</td>
<td>-20–60°C</td>
<td>-20–60°C</td>
</tr>
<tr>
<td>Rel. humidity</td>
<td>max. 85%</td>
<td>max. 85%</td>
</tr>
<tr>
<td>Dimensions w x h x d</td>
<td>469.5 x 416 x 75.5 mm</td>
<td>643 x 396 x 87 mm</td>
</tr>
<tr>
<td>Power supply</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>Certified to</td>
<td>EN 60601-1, protection class IPX0</td>
<td>EN 60601-1, UL 60601-1, MDD93/42/EEC, protection class IPX2</td>
</tr>
</tbody>
</table>
Accessories for Video Documentation
Fiber Optic Light Cable and Cold Light Fountains

Fiber Optic Light Cable, with straight connector, diameter 3.5 mm, length 230 cm

Cold Light Fountain XENON 300 SCB

Cold Light Fountain XENON 300 SCB with built-in antifog air-pump, and integrated KARL STORZ Communication Bus System SCB power supply: 100–125 VAC/220–240 VAC, 50/60 Hz including:
- Mains Cord
- SCB Connecting Cable, length 100 cm

Spare Lamp Module XENON with heat sink, 300 watt, 15 volt

XENON Spare Lamp, only, 300 watt, 15 volt

Cold Light Fountain XENON NOVA® 175

Cold Light Fountain XENON NOVA® 175, power supply: 100–125 VAC/220–240 VAC, 50/60 Hz including:
- Mains Cord

XENON Spare Lamp, 175 watt, 15 volt
Data Management and Documentation
KARL STORZ AIDA® – Exceptional documentation

The name AIDA stands for the comprehensive implementation of all documentation requirements arising in surgical procedures: A tailored solution that flexibly adapts to the needs of every specialty and thereby allows for the greatest degree of customization.

This customization is achieved in accordance with existing clinical standards to guarantee a reliable and safe solution. Proven functionalities merge with the latest trends and developments in medicine to create a fully new documentation experience – AIDA.

AIDA seamlessly integrates into existing infrastructures and exchanges data with other systems using common standard interfaces.

WD 200-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, power supply 100-240 VAC, 50/60 Hz including:
- USB Silicone Keyboard, with touchpad
- ACC Connecting Cable
- DVI Connecting Cable, length 200 cm
- HDMI-DVI Cable, length 200 cm
- Mains Cord, length 300 cm

WD 250-XX* AIDA Documentation System, for recording still images and videos, dual channel up to FULL HD, 2D/3D, including SMARTSCREEN® (touch screen), power supply 100-240 VAC, 50/60 Hz including:
- USB Silicone Keyboard, with touchpad
- ACC Connecting Cable
- DVI Connecting Cable, length 200 cm
- HDMI-DVI Cable, length 200 cm
- Mains Cord, length 300 cm

*XX Please indicate the relevant country code (DE, EN, ES, FR, IT, PT, RU) when placing your order.
Workflow-oriented use

Patient
Entering patient data has never been this easy. AIDA seamlessly integrates into the existing infrastructure such as HIS and PACS. Data can be entered manually or via a DICOM worklist. All important patient information is just a click away.

Checklist
Central administration and documentation of time-out. The checklist simplifies the documentation of all critical steps in accordance with clinical standards. All checklists can be adapted to individual needs for sustainably increasing patient safety.

Record
High-quality documentation, with still images and videos being recorded in FULL HD and 3D. The Dual Capture function allows for the parallel (synchronous or independent) recording of two sources. All recorded media can be marked for further processing with just one click.

Edit
With the Edit module, simple adjustments to recorded still images and videos can be very rapidly completed. Recordings can be quickly optimized and then directly placed in the report. In addition, freeze frames can be cut out of videos and edited and saved. Existing markings from the Record module can be used for quick selection.

Complete
Completing a procedure has never been easier. AIDA offers a large selection of storage locations. The data exported to each storage location can be defined. The Intelligent Export Manager (IEM) then carries out the export in the background. To prevent data loss, the system keeps the data until they have been successfully exported.

Reference
All important patient information is always available and easy to access. Completed procedures including all information, still images, videos, and the checklist report can be easily retrieved from the Reference module.
Equipment Cart

Equipment Cart
wide, high, rides on 4 antistatic dual wheels equipped with locking brakes 3 shelves, mains switch on top cover, central beam with integrated electrical subdistributors with 12 sockets, holder for power supplies, potential earth connectors and cable winding on the outside,

Dimensions:
- Equipment cart: 830 x 1474 x 730 mm (w x h x d),
- shelf: 630 x 510 mm (w x d),
- caster diameter: 150 mm

including:
- **Base module equipment cart**, wide
- **Cover equipment**, equipment cart wide
- **Beam package equipment**, equipment cart wide
- **3x Shelf**, wide
- **Drawer unit with lock**, wide
- **2x Equipment rail**, long
- **Camera holder**

Monitor Swivel Arm, height and side adjustable, can be turned to the left or the right side, swivel range 180°, overhang 780 mm, overhang from centre 1170 mm, load capacity max. 15 kg, with monitor fixation VESA 5/100, for usage with equipment carts UG xxx
Recommended Accessories for Equipment Cart

Isolation Transformer,
200 V–240 V; 2000 VA with 3 special mains socket, expulsion fuses, 3 grounding plugs, dimensions: 330 x 90 x 495 mm (w x h x d), for usage with equipment carts UG xxx

Earth Leakage Monitor,
200 V–240 V, for mounting at equipment cart, control panel dimensions: 44 x 80 x 29 mm (w x h x d), for usage with isolation transformer UG 310

Monitor Holding Arm,
height adjustable, inclinable, mountable on left or right, turning radius approx. 320°, overhang 530 mm, load capacity max. 15 kg, monitor fixation VESA 75/100, for usage with equipment carts UG xxx

Please note that the described products in this medium may not be available yet in all countries due to different regulatory requirements.